624 research outputs found

    A MULTI-GIGABIT NETWORK PACKET INSPECTION AND ANALYSIS ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION UTILIZING PIPELINING AND CONTENT-ADDRESSABLE MEMORY

    Get PDF
    Increases in network traffic volume and transmission speeds have given rise to the need for extremely fast packet processing. Many traditional processor-based network devices are no longer sufficient to handle tasks such as packet analysis and intrusion detection at multi-Gigabit rates. This thesis proposes two novel pipelined hardware architectures to relieve the computational load of a processor within network switches and routers. First, the Embedded Protocol Analyzer Pre-Processor (ePAPP) is capable of taking an unclassified packet byte stream directly off of a network cable at line speed and separating the data into individually classified protocol fields. Second, the CAM-Assisted Signature-Matching Architecture (CASMA) uses ternary content-addressable memory to perform the task of stateless intrusion detection signature-matching. The Snort open-source software network intrusion detection system is used as a model for intrusion detection functionality. Structured ASIC synthesis results show that ePAPP supports speeds of 2.89 Gb/s using less than 1% of available logic cells. CASMA is shown to support 1.25 Gb/s using less than 6% of available logic cells. The CASMA architecture is demonstrated to be able to implement 1729 of 1993 or 86.8% of the attack signatures, or rules, packaged with Snort version 2.1.2

    Content addressable memory project

    Get PDF
    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks

    A CONTENT-ADDRESSABLE-MEMORY ASSISTED INTRUSION PREVENTION EXPERT SYSTEM FOR GIGABIT NETWORKS

    Get PDF
    Cyber intrusions have become a serious problem with growing frequency and complexity. Current Intrusion Detection/Prevention Systems (IDS/IPS) are deficient in speed and/or accuracy. Expert systems are one functionally effective IDS/IPS method. However, they are in general computationally intensive and too slow for real time requirements. This poor performance prohibits expert system's applications in gigabit networks. This dissertation describes a novel intrusion prevention expert system architecture that utilizes the parallel search capability of Content Addressable Memory (CAM) to perform intrusion detection at gigabit/second wire speed. A CAM is a parallel search memory that compares all of its entries against input data in parallel. This parallel search is much faster than the serial search operation in Random Access Memory (RAM). The major contribution of this thesis is to accelerate the expert system's performance bottleneck "match" processes using the parallel search power of a CAM, thereby enabling the expert systems for wire speed network IDS/IPS applications. To map an expert system's Match process into a CAM, this research introduces a novel "Contextual Rule" (C-Rule) method that fundamentally changes expert systems' computational structures without changing its functionality for the IDS/IPS problem domain. This "Contextual Rule" method combines expert system rules and current network states into a new type of dynamic rule that exists only under specific network state conditions. This method converts the conventional two-database match process into a one-database search process. Therefore it enables the core functionality of the expert system to be mapped into a CAM and take advantage of its search parallelism.This thesis also introduces the CAM-Assisted Intrusion Prevention Expert System (CAIPES) architecture and shows how it can support the vast majority of the rules in the 1999 Lincoln Lab's DARPA Intrusion Detection Evaluation data set, and rules in the open source IDS "Snort". Supported rules are able to detect single-packet attacks, abusive traffic and packet flooding attacks, sequences of packets attacks, and flooding of sequences attacks. Prototyping and simulation have been performed to demonstrate the detection capability of these four types of attacks. Hardware simulation of an existing CAM shows that the CAIPES architecture enables gigabit/s IDS/IPS

    A pattern matching coprocessor for network security

    Full text link
    corecore