2,875 research outputs found

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    A multimodal approach to blind source separation of moving sources

    Get PDF
    A novel multimodal approach is proposed to solve the problem of blind source separation (BSS) of moving sources. The challenge of BSS for moving sources is that the mixing filters are time varying; thus, the unmixing filters should also be time varying, which are difficult to calculate in real time. In the proposed approach, the visual modality is utilized to facilitate the separation for both stationary and moving sources. The movement of the sources is detected by a 3-D tracker based on video cameras. Positions and velocities of the sources are obtained from the 3-D tracker based on a Markov Chain Monte Carlo particle filter (MCMC-PF), which results in high sampling efficiency. The full BSS solution is formed by integrating a frequency domain blind source separation algorithm and beamforming: if the sources are identified as stationary for a certain minimum period, a frequency domain BSS algorithm is implemented with an initialization derived from the positions of the source signals. Once the sources are moving, a beamforming algorithm which requires no prior statistical knowledge is used to perform real time speech enhancement and provide separation of the sources. Experimental results confirm that by utilizing the visual modality, the proposed algorithm not only improves the performance of the BSS algorithm and mitigates the permutation problem for stationary sources, but also provides a good BSS performance for moving sources in a low reverberant environment

    Audio‐Visual Speaker Tracking

    Get PDF
    Target motion tracking found its application in interdisciplinary fields, including but not limited to surveillance and security, forensic science, intelligent transportation system, driving assistance, monitoring prohibited area, medical science, robotics, action and expression recognition, individual speaker discrimination in multi‐speaker environments and video conferencing in the fields of computer vision and signal processing. Among these applications, speaker tracking in enclosed spaces has been gaining relevance due to the widespread advances of devices and technologies and the necessity for seamless solutions in real‐time tracking and localization of speakers. However, speaker tracking is a challenging task in real‐life scenarios as several distinctive issues influence the tracking process, such as occlusions and an unknown number of speakers. One approach to overcome these issues is to use multi‐modal information, as it conveys complementary information about the state of the speakers compared to single‐modal tracking. To use multi‐modal information, several approaches have been proposed which can be classified into two categories, namely deterministic and stochastic. This chapter aims at providing multimedia researchers with a state‐of‐the‐art overview of tracking methods, which are used for combining multiple modalities to accomplish various multimedia analysis tasks, classifying them into different categories and listing new and future trends in this field

    3D AUDIO-VISUAL SPEAKER TRACKING WITH AN ADAPTIVE PARTICLE FILTER

    Get PDF
    reserved4siWe propose an audio-visual fusion algorithm for 3D speaker tracking from a localised multi-modal sensor platform composed of a camera and a small microphone array. After extracting audio-visual cues from individual modalities we fuse them adaptively using their reliability in a particle filter framework. The reliability of the audio signal is measured based on the maximum Global Coherence Field (GCF) peak value at each frame. The visual reliability is based on colour-histogram matching with detection results compared with a reference image in the RGB space. Experiments on the AV16.3 dataset show that the proposed adaptive audio-visual tracker outperforms both the individual modalities and a classical approach with fixed parameters in terms of tracking accuracy.Qian, Xinyuan; Brutti, Alessio; Omologo, Maurizio; Cavallaro, AndreaQian, Xinyuan; Brutti, Alessio; Omologo, Maurizio; Cavallaro, Andre

    Bearing-only acoustic tracking of moving speakers for robot audition

    Get PDF
    This paper focuses on speaker tracking in robot audition for human-robot interaction. Using only acoustic signals, speaker tracking in enclosed spaces is subject to missing detections and spurious clutter measurements due to speech inactivity, reverberation and interference. Furthermore, many acoustic localization approaches estimate speaker direction, hence providing bearing-only measurements without range information. This paper presents a probability hypothesis density (PHD) tracker that augments the bearing-only speaker directions of arrival with a cloud of range hypotheses at speaker initiation and propagates the random variates through time. Furthermore, due to their formulation PHD filters explicitly model, and hence provide robustness against, clutter and missing detections. The approach is verified using experimental results

    Object Tracking from Audio and Video data using Linear Prediction method

    Get PDF
    Microphone arrays and video surveillance by camera are widely used for detection and tracking of a moving speaker. In this project, object tracking was planned using multimodal fusion i.e., Audio-Visual perception. Source localisation can be done by GCC-PHAT, GCC-ML for time delay estimation delay estimation. These methods are based on spectral content of the speech signals that can be effected by noise and reverberation. Video tracking can be done using Kalman filter or Particle filter. Therefore Linear Prediction method is used for audio and video tracking. Linear prediction in source localisation use features related to excitation source information of speech which are less effected by noise. Hence by using this excitation source information, time delays are estimated and the results are compared with GCC PHAT method. The dataset obtained from [20] is used in video tracking a single moving object captured through stationary camera. Then for object detection, projection histogram is done followed by linear prediction for tracking and the corresponding results are compared with Kalman filter method

    Suivi Multi-Locuteurs avec des Informations Audio-Visuelles pour la Perception des Robots

    Get PDF
    Robot perception plays a crucial role in human-robot interaction (HRI). Perception system provides the robot information of the surroundings and enables the robot to give feedbacks. In a conversational scenario, a group of people may chat in front of the robot and move freely. In such situations, robots are expected to understand where are the people, who are speaking, or what are they talking about. This thesis concentrates on answering the first two questions, namely speaker tracking and diarization. We use different modalities of the robot’s perception system to achieve the goal. Like seeing and hearing for a human-being, audio and visual information are the critical cues for a robot in a conversational scenario. The advancement of computer vision and audio processing of the last decade has revolutionized the robot perception abilities. In this thesis, we have the following contributions: we first develop a variational Bayesian framework for tracking multiple objects. The variational Bayesian framework gives closed-form tractable problem solutions, which makes the tracking process efficient. The framework is first applied to visual multiple-person tracking. Birth and death process are built jointly with the framework to deal with the varying number of the people in the scene. Furthermore, we exploit the complementarity of vision and robot motorinformation. On the one hand, the robot’s active motion can be integrated into the visual tracking system to stabilize the tracking. On the other hand, visual information can be used to perform motor servoing. Moreover, audio and visual information are then combined in the variational framework, to estimate the smooth trajectories of speaking people, and to infer the acoustic status of a person- speaking or silent. In addition, we employ the model to acoustic-only speaker localization and tracking. Online dereverberation techniques are first applied then followed by the tracking system. Finally, a variant of the acoustic speaker tracking model based on von-Mises distribution is proposed, which is specifically adapted to directional data. All the proposed methods are validated on datasets according to applications.La perception des robots joue un rôle crucial dans l’interaction homme-robot (HRI). Le système de perception fournit les informations au robot sur l’environnement, ce qui permet au robot de réagir en consequence. Dans un scénario de conversation, un groupe de personnes peut discuter devant le robot et se déplacer librement. Dans de telles situations, les robots sont censés comprendre où sont les gens, ceux qui parlent et de quoi ils parlent. Cette thèse se concentre sur les deux premières questions, à savoir le suivi et la diarisation des locuteurs. Nous utilisons différentes modalités du système de perception du robot pour remplir cet objectif. Comme pour l’humain, l’ouie et la vue sont essentielles pour un robot dans un scénario de conversation. Les progrès de la vision par ordinateur et du traitement audio de la dernière décennie ont révolutionné les capacités de perception des robots. Dans cette thèse, nous développons les contributions suivantes : nous développons d’abord un cadre variationnel bayésien pour suivre plusieurs objets. Le cadre bayésien variationnel fournit des solutions explicites, rendant le processus de suivi très efficace. Cette approche est d’abord appliqué au suivi visuel de plusieurs personnes. Les processus de créations et de destructions sont en adéquation avecle modèle probabiliste proposé pour traiter un nombre variable de personnes. De plus, nous exploitons la complémentarité de la vision et des informations du moteur du robot : d’une part, le mouvement actif du robot peut être intégré au système de suivi visuel pour le stabiliser ; d’autre part, les informations visuelles peuvent être utilisées pour effectuer l’asservissement du moteur. Par la suite, les informations audio et visuelles sont combinées dans le modèle variationnel, pour lisser les trajectoires et déduire le statut acoustique d’une personne : parlant ou silencieux. Pour experimenter un scenario où l’informationvisuelle est absente, nous essayons le modèle pour la localisation et le suivi des locuteurs basé sur l’information acoustique uniquement. Les techniques de déréverbération sont d’abord appliquées, dont le résultat est fourni au système de suivi. Enfin, une variante du modèle de suivi des locuteurs basée sur la distribution de von-Mises est proposée, celle-ci étant plus adaptée aux données directionnelles. Toutes les méthodes proposées sont validées sur des bases de données specifiques à chaque application
    corecore