14,635 research outputs found

    A hybrid test compression technique for efficient testing of systems-on-a-chip

    Get PDF
    One of the major challenges in testing a System-on-a-Chip (SOC) is dealing with the large test data size. To reduce the volume of test data, several efficient test data compression techniques have been recently proposed. In this paper, we propose hybrid test compression techniques that combine the Geometric-Primitives-Based compression technique with the frequency-directed run-length (FDR) and extended frequency-directed run-length (EFDR) coding techniques. Based on experimental results, we demonstrate the effectiveness of the proposed hybrid compression techniques in increasing the test data compression ratios over those obtained by the Geometric-Primitives-Based compression technique

    A Hybrid Test Compression Technique for Efficient Testing of Systems-on-a-Chip

    Get PDF
    One of the major challenges in testing a System-on-a-Chip (SOC) is dealing with the large test data size. To reduce the volume of test data, several efficient test data compression techniques have been recently proposed. In this paper, we propose hybrid test compression techniques that combine the Geometric-Primitives-Based compression technique with the frequency-directed run-length (FDR) and extended frequencydirected run-length (EFDR) coding techniques. Based on experimental results, we demonstrate the effectiveness of the proposed hybrid compression techniques in increasing the test data compression ratios over those obtained by the Geometric- Primitives-Based compression technique

    Sensornet checkpointing: enabling repeatability in testbeds and realism in simulations

    Get PDF
    When developing sensor network applications, the shift from simulation to testbed causes application failures, resulting in additional time-consuming iterations between simulation and testbed. We propose transferring sensor network checkpoints between simulation and testbed to reduce the gap between simulation and testbed. Sensornet checkpointing combines the best of both simulation and testbeds: the nonintrusiveness and repeatability of simulation, and the realism of testbeds

    Vertex-Detector R&D for CLIC

    Full text link
    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the current status of R&D on sensors, readout and detector integration is presented.Comment: 12 pages, 7 figures. Talk presented at the 13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13), 7 - 10 October 2013, Siena, Ital

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints
    corecore