838 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Review on power quality solution technology

    Get PDF
    This paper presents a comprehensive study of various possible solutions for power quality improvement in common applications and supply system. This includes improved power quality converters (IPQC), multi-pulse converters, active compensation, passive compensation and their hybrid configurations. Various configurations and topologies of custom power devices such as DSTATCOM (Distribution Static Compensator), DVR (Dynamic Voltage Restorer) and UPQC (Unified Power Quality Compensator) are also described in detail. Main applications of these devices are for reactive power compensation, harmonic elimination, voltage sag/swell mitigation, voltage regulation, load balancing, neutral current reduction etc. Many such cases of power quality problems have been taken up and suitable solutions have been identified for those cases. As an example, a model of DSTATCOM is developed and its performance is presented for a distribution system feeding nonlinear loads

    ANALYSIS AND SIMULATION OF PHOTOVOLTAIC SYSTEMS INCORPORATING BATTERY ENERGY STORAGE

    Get PDF
    Solar energy is an abundant renewable source, which is expected to play an increasing role in the grid\u27s future infrastructure for distributed generation. The research described in the thesis focuses on the analysis of integrating multi-megawatt photovoltaics (PV) systems with battery energy storage into the existing grid and on the theory supporting the electrical operation of components and systems. The PV system is divided into several sections, each having its own DC-DC converter for maximum power point tracking and a two-level grid connected inverter with different control strategies. The functions of the battery are explored by connecting it to the system in order to prevent possible voltage fluctuations and as a buffer storage in order to eliminate the power mismatch between PV array generation and load demand. Computer models of the system are developed and implemented using the PSCADTM/EMTDCTM software

    Partitioning And Interface Requirements Between System And Application Control For Power Electronic Converter Systems

    Get PDF
    Applications of power electronics in power systems are growing very rapidly and changing the power system infrastructure in terms of operation speed and control. Even though applications of power electronics are wide spread, the cost and reliability of power electronics are the issues that could hinder their penetration in the utility and industrial systems. The demand for efficient and reliable converter controllers gave rise to modularized converter and controller design. The objective of this dissertation is to determine the appropriate partitioning and interface requirements between the system and application control layers for power electronic converters so that the minimum set of system layer to application layer control interfaces is compatible across all power electronic controllers. Previous work, using the Open System Architecture (OSA) concept has shown that there is a set of common functions shared by different converters at the low-level control layers. It has also shown that, depending on the application, there is a variation in control functions in application/middle control layers. This functional variation makes it difficult to define system functionality of power converters at upper control layers and further complicates the investigation into the partition requirements of system to application control layer. However, by analyzing the current or voltage affected by a converter in terms of orthogonal components, where each component or group of components is associated with a power-converter application, and the amount of required DC bus energy storage, a common functionality can be observed at the application control layer. Therefore, by establishing common functionality in terms of affected current or voltage components, a flexibility of operation can be realized at upper control layers that will be a major contribution towards standardizing the open system architecture. In order to a construct functional flexible power converter control architecture, the interface requirements to the system control layer and the partitioning between the system control layer and application control layer need to be explored. This will provide flexibility of system design methodology by reducing the number of constraints and enabling system designers to explore possible system architectures much more effectively

    Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    Full text link

    A multi-port power conversion system for the more electric aircraft

    Get PDF
    In more electric aircraft (MEA) weight reduction and energy efficiency constitute the key figures. Additionally, the safety and continuity of operation of its electrical power distribution system (EPDS) is of critical importance. These sets of desired features are in disagreement with each other, because higher redundancy, needed to guarantee the safety of operation, implies additional weight. In fact, EPDS is usually divided into isolated sections, which need to be sized for the worst-case scenario. Several concepts of EPDS have been investigated, aiming at enabling the power exchange among separate sections, which allows better optimization for power and weight of the whole system. In this paper, an approach based on the widespread use of multi-port power converters for both DC/DC and DC/AC stages is proposed. System integration of these two is proposed as a multiport power conversion system (MPCS), which allows a ring power distribution while galvanic isolation is still maintained, even in fault conditions. Thus, redundancy of MEA is established by no significant weight increase. A machine design analysis shows how the segmented machine could offer superior performance to the traditional one with same weight. Simulation and experimental verifications show the system feasibility in both normal and fault operations

    A four-legs matrix converter ground power unit with repetitive voltage control

    Get PDF
    In this paper, a four-leg matrix converter is proposed as the power conversion core for aircraft ground power unit (GPU) applications. This structure allows easy management of unbalanced and nonlinear loads with minimal disruption of the power supply operation. A hybrid repetitive-traditional control system is proposed to regulate the output voltage of the GPU. This solution reduces the steady-state tracking error, maintaining fast dynamic characteristics, and increases the stability of the converter compared to conventional approaches. Simulations and experimental results from a 7.5-KW converter prototype are presented to verify the operation of the proposed configuration and to prove the effectiveness of the solution

    Synchronverter-based control for wind power

    Get PDF
    More and more attention has been paid to the energy crisis due to the increasing energy demand from industrial and commercial applications. The utilisation of wind power, which is considered as one of the most promising renewable energy sources, has grown rapidly in the last three decades. In recent years, many power converter techniques have been developed to integrate wind power with the electrical grid. The use of power electronic converters allows for variable speed operation of wind turbines, and enhanced power extraction. This work, which is supported by EPSRC and Nheolis under the DHPA scheme, focuses on the design and analysis of control systems for wind power. In this work, two of the most popular AC-DC-AC topologies with permanent magnet synchronous generators (PMSG) have been developed. One consists of an uncontrollable rectifier, a boost converter and an inverter and a current control scheme is proposed to achieve the maximum power point tracking (MPPT). In the control strategy, the output current of the uncontrollable rectifier is controlled by a boost converter according to the current reference, which is determined by a climbing algorithm, to achieve MPPT. The synchronverter technology has been applied to control the inverter for the grid-connection. An experimental setup based on DSP has been designed to implement all the above mentioned experiments. In addition, a synchronverter-based parallel control strategy, which consists of a frequency droop loop and a voltage droop loop to achieve accurate sharing of real power and reactive power respectively, has been further studied. Moreover, a control strategy based on the synchronverter has been presented to force the inverter to have capacitive output impedance, so that the quality of the output voltage is improved. Abstract The other topology consists of a full-scale back-to-back converter, of which the rectifier is controllable. Two control strategies have been proposed to operate a three-phase rectifier to mimic a synchronous motor, following the idea of synchronverters to operate inverters to mimic synchronous generators. In the proposed schemes, the real power extracted from the source and the output voltage are the control variables, respectively, hence they can be employed in different applications. Furthermore, improved control strategies are proposed to self-synchronise with the grid. This does not only improve the performance of the system but also considerably reduces the complexity of the overall controller. All experiments have been implemented on a test rig based on dSPACE to demonstrate the excellent performance of the proposed control strategies with unity power factor, sinusoidal currents and good dynamics. Finally, an original control strategy based on the synchronverter technology has been proposed for back-to-back converters in wind power applications to make the whole system behave as a generator-motor-generator system
    corecore