4 research outputs found

    An Hybrid Genetic Algorithm to Optimization of Flow Shop Scheduling Problems under Real Environments Constraints

    Get PDF
    This paper aims to analyzing the effect of the inclusion of several constraints that have negative influence in the real manufacturing productions. For the solution of the scheduling problem treated in this paper, known as Flow Shop Scheduling, an efficient Genetic Algorithm is introduced combined with the Variable Neighborhood Search for problems of n tasks and m machines minimizing the total completion time or makespan. Release date, dependent setup-times and transport times are entered. These are common restrictions that can be found in multiple manufacturing environments where there are machines, tools, and a set of jobs must be processed in these, following the same flow pattern. The computational experiments carried out on a set of instances of problems of different sizes of complexity show that the proposed hybrid metaheuristic achieves high quality solutions comparable to the optimum ones reported

    Design of a solution technique based on an integral approach for the Flexible Open-Flow Shop scheduling problem

    Get PDF
    In manufacturing industries, scheduling is a form of decision-making that plays a crucial role. The determination of the methods by which a set of jobs must be manufactured in order to seek specific goals leads to the development of different schedule techniques. However, scheduling depends on the type of workshop or manufacturing environment such as open shop, job shop and flow shop. There are cases that more than one environment for the same manufacturing process could coexist. This project deals with a specific scheduling problem in which each job is processed under the combination of two shop environments; the first one is related to an open shop while the second one corresponds to a flow shop; this problem is called the Flexible open-flow shop (FOFS). These types of scheduling problems present NP-hardness, meaning the neediness of sophisticated algorithms to find solutions in reasonable computational times. Additionally, are commonly solved separately or by approximating into another workshop, leaving the interaction of both environments irrelevant. Thus, the main objective of this project is to design solution techniques based on an integral approach to minimize the maximum completion time also known as makespan.Ingeniero (a) IndustrialPregrad

    Desarrollo de una herramienta de programación de la producción que optimice el makespan en un sistema Flow Shop Flexible; caso de estudio Carpintería y Tapicería Internacional.

    Get PDF
    Dentro de la dirección de operaciones, la programación de la producción es una actividad primordial en organizaciones de bienes o servicios. Su función radica en asignar los recursos a las operaciones del sistema productivo, con la finalidad de optimizar y cumplir objetivos empresariales. Un taller de flujo flexible o Flow Shop Flexible (FFS), es una configuración productiva en línea con flujo continuo de materiales y productos que ocupan las mismas instalaciones; donde existe un problema común, el cual es encontrar la secuencia de trabajos u operaciones que optimice una función objetivo planteada. En el presente estudio, se desarrolló una herramienta de programación de la producción en un sistema de producción FFS, que minimiza el tiempo que transcurre entre el inicio del procesamiento del primer trabajo en la primera estación y la finalización del último trabajo en la última estación que se conoce como makespan, y encuentra la secuencia de trabajos a ser procesados. El caso de estudio es la organización CARPINTERÍA Y TAPICERÍA INTERNACIONAL. Para resolver este problema, se utilizaron herramientas como VSM, el balanceo de procesos y una herramienta de programación con un modelo matemático que referencia las condiciones del entorno productivo en estudio junto con el uso de un algoritmo genético. Con base en varias pruebas se demostró que la herramienta de programación funciona adecuadamente, porque redujo el makespan en 85.2 minutos y estructura la secuencia óptima de trabajos, representando una mejora del 15% al rendimiento del sistema productivo y mayor productividad en las estaciones de trabajoWithin operations management, production scheduling is a primary activity in goods or services organizations. Its function is to allocate resources to the operations of the production system in order to optimize and meet business objectives. A Flexible Flow Shop (FFS) is a productive in-line configuration with continuous material flow materials and products occupying the same facilities, where there is a common problem: finding the sequence of jobs or operations that optimizes a given objective function. In the present study, a production scheduling tool was developed in an FFS production system. It minimizes the time elapsed between the beginning of the processing of the first job at the first station and the completion of the last job at the last station known as makespan and finds the sequence of jobs to be processed. The case study is the organization CARPINTERÍA Y TAPICERÍA INTERNACIONAL. To solve this problem, tools such as VSM, process balancing, and a programming tool. with a mathematical model that references the conditions of the productive environment under study together with the use of a genetic algorithm. Based on several tests, it was demonstrated that the programming tool works properly, because it reduced the makespan by 85.2 minutes and structures the optimal sequence of jobs, representing a 15% improvement in the performance of the production system and higher productivity at the workstationsIngeniero IndustrialCuenc

    Esnek atölye tipi hücre çizelgeleme problemleri için çok amaçlı matematiksel model ve genetik algoritma ile çözüm önerisi

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Günümüz rekabetçi iş ortamında, müşteriler daha düşük maliyetle daha yüksek kalitede çeşitli ürünleri satın almak istemektedir. İmalat firmaları, talep çeşitliliğini karşılamak için yüksek derecede ürün çeşitliliğine ve küçük imalat parti büyüklüğüne ihtiyaç duymaktadır. Üretimdeki ürün çeşitlilikleri uzun hazırlık ve taşıma süreleri, karmaşık çizelgeleme problemleri gibi birçok probleme neden olmaktadır. Geleneksel imalat sistemleri, bu tip değişikliklere cevap vermede yeterince esnek değilken Hücresel Üretim Sistemleri üreticilerin bu ihtiyaçlarına cevap verebilecek özelliklere sahiptir. Ayrıca gerçek hayat problemlerinin çoğunda, bir parçanın bazı ya da bütün operasyonları birden fazla makinede işlem görebilmekte ve bazen de bu operasyonlar bir makineyi ya da iş merkezini birden fazla kez ziyaret etmektedir. Bu seçenek sisteme esneklik kazandırırken bu kadar karmaşık bir üretim sisteminin başarılı ve doğru bir şekilde işletilebilmesi kaynakların etkin kullanılmasını da gerektirmektedir. Bu çalışma, istisnai parçaları, hücrelerarası hareketleri, hücrelerarası taşıma sürelerini, sıra bağımlı parça ailesi hazırlık sürelerini ve yeniden işlem gören parçaları dikkate alarak hücresel imalat ortamında esnek atölye tipi çizelgeleme probleminin çözümüne dair bir matematiksel model ve çözüm yöntemi sunmaktadır. Mevcut bilgilerimiz ışığında yapılan bu çalışma Esnek Atölye Tipi Hücre Çizelgeleme Probleminde (EATHÇP) çok amaçlı matematiksel model ve meta-sezgiselinin kullanımı için ilk girişimdir. Bununla birlikte gerçek hayat uygulamaları için EATHÇP süreci, birçok çelişen amacı dikkate almayı gerektirdiği için ele alınan skalerleştirme metodu pratik uygulama ve teorik araştırma açısından oldukça önemlidir. Önerilen karma tamsayılı doğrusal olmayan matematiksel modelle küçük ve orta boyutlu problemler çözülebilmektedir. Büyük boyutlu problemlerin çözümü, doğrusal olmayan modellerle makul zamanlarda olamayacağı ya da çok uzun süreceği için konik skalerleştirmeli çok amaçlı matematiksel modeli kullanan bir Genetik Algoritma (GA) meta-sezgisel çözüm yöntemi önerilmiştir. GA yaklaşımının en iyi veya en iyiye yakın çözüme ulaşmasına etki eden parametrelerin en iyi kombinasyonu belirlemek amacı ile bir deney tasarımı gerçekleştirilmiştir. Bu tez çalışması için Eskişehir Tülomsaş Motor Fabrikası'nda bir uygulama çalışması yürütülmüştür. Yürütülen bu çalışma, altı farklı amaç ağırlık değerleri kullanılarak hem konik skalerleştirmeli GA yaklaşımı ile hem de ağırlıklı toplam skalerleştirmeli GA yaklaşımı ile çözülmüştür. Amaç ağırlıklarının beşinde çok amaçlı konik skalerleştirme GA yaklaşımının daha baskın sonuçlara ulaşabildiği vurgulanmıştır. Ayrıca, önerilen çok amaçlı modelin gerçek hayat problemleri için de makul zamanda uygun çözümler üretebildiği gösterilmiştir.In today's highly competitive business environment, customers desire to buy various products with higher quality at lower costs. Manufacturing firms require a high degree of product variety and small manufacturing lot sizes to meet the demand variability. The product variations in manufacturing cause many problems such as lengthy setup and transportation times, complex scheduling. Cellular Manufacturing Systems contain the characteristics, which will respond to the needs of manufacturers, even though Conventional Manufacturing Systems are not flexible enough to respond to changes. In addition, in most real life manufacturing problems, some or all operations of a part can be processed on more than one machine, and sometimes operations may visit a machine or work center more than once. It is necessary to use resources effectively in order to run such a complex production system successfully. In this study, a mathematical model and a solution approach that deals with a flexible job shop scheduling problem in cellular manufacturing environment is proposed by taking into consideration exceptional parts, intercellular moves, intercellular transportation times, sequence-dependent family setup times, and recirculation. To the best of our knowledge, this is the first attempt to use multi-objective mathematical model and meta-heuristic approach for a Flexible Job Shop Cell Scheduling Problem (FJCSP). However, in the real-life applications, the scalarization method considered is highly important in terms of theoretical research and practical application because the FJCSP process is not easy because of many conflicting objectives. The proposed mixed integer non-linear model can be used for solving small and middle scaled problems. Solution of large scaled problems is not possible in reasonable time or takes too long time, so a Genetic Algorithm (GA) meta-heuristic approach that uses a multi-objective mathematical model with conic scalarization has been presented. An experimental design was used to determine the best combination of parameters which are affected performance of genetic algorithm to achieve optimum or sub-optimum solution. In this thesis study, a case study was conducted in Tülomsaş Locomotive and Engine Factory in Eskişehir. This study was solved by using both conic scalarization GA approach and weighted sum scalarization GA approach with six different weights of objective. It is emphasized that the multi-objective conic scalarization GA approach has better quality than other approach for five different weights of objective. In addition, it has been shown that the multi-objective model could also obtain optimum results in reasonable time for the real-world problems
    corecore