4,500 research outputs found

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Hetergeneous Networks

    Get PDF
    Among current techniques for dynamic access to television (TV) white space (TVWS), geolocation database-based access provides a promising performance in protecting the TV-band incumbents from interference that cannot be efficiently achieved in other license-exempt models. However, in heterogeneous wireless networks, most portable devices do not have such access and may cause interference to TV incumbents. We propose a hierarchical model for spectrum sharing in TVWS that includes a wide range of fixed and portable devices. In the first tier, the TV broadcaster can lease the spectrum bands to local fixed users based on a soft license agreement. The fixed users are allowed to share access to this spectrum with some mobile users in their proximity in exchange for cooperative relaying. We consider a practical scenario, where only partial channel state information (CSI) is available at the users\u27 transmitters, and we propose a robust algorithm against such uncertainties in CSI values. We also propose a reputation-based relay selection mechanism to identify selfish portable users. The proposed spectrum sharing framework can provide a practical model for TVWS-coexistence that prevents undesired interference to the incumbents while restricting interference among the unlicensed devices. The simulation results show the enhancement of fixed users\u27 rate compared with alternative relay selection methods

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio
    • 

    corecore