9,723 research outputs found

    Computational models for inferring biochemical networks

    Get PDF
    Biochemical networks are of great practical importance. The interaction of biological compounds in cells has been enforced to a proper understanding by the numerous bioinformatics projects, which contributed to a vast amount of biological information. The construction of biochemical systems (systems of chemical reactions), which include both topology and kinetic constants of the chemical reactions, is NP-hard and is a well-studied system biology problem. In this paper, we propose a hybrid architecture, which combines genetic programming and simulated annealing in order to generate and optimize both the topology (the network) and the reaction rates of a biochemical system. Simulations and analysis of an artificial model and three real models (two models and the noisy version of one of them) show promising results for the proposed method.The Romanian National Authority for Scientific Research, CNDI–UEFISCDI, Project No. PN-II-PT-PCCA-2011-3.2-0917

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Improved gene expression programming to solve the inverse problem for ordinary differential equations

    Get PDF
    Many complex systems in the real world evolve with time. These dynamic systems are often modeled by ordinary differential equations in mathematics. The inverse problem of ordinary differential equations is to convert the observed data of a physical system into a mathematical model in terms of ordinary differential equations. Then the modelay be used to predict the future behavior of the physical system being modeled. Genetic programming has been taken as a solver of this inverse problem. Similar to genetic programming, gene expression programming could do the same job since it has a similar ability of establishing the model of ordinary differential systems. Nevertheless, such research is seldom studied before. This paper is one of the first attempts to apply gene expression programming for solving the inverse problem of ordinary differential equations. Based on a statistic observation of traditional gene expression programming, an improvement is made in our algorithm, that is, genetic operators should act more often on the dominant part of genes than on the recessive part. This may help maintain population diversity and also speed up the convergence of the algorithm. Experiments show that this improved algorithm performs much better than genetic programming and traditional gene expression programming in terms of running time and prediction precisio

    Addressing current challenges in cancer immunotherapy with mathematical and computational modeling

    Full text link
    The goal of cancer immunotherapy is to boost a patient's immune response to a tumor. Yet, the design of an effective immunotherapy is complicated by various factors, including a potentially immunosuppressive tumor microenvironment, immune-modulating effects of conventional treatments, and therapy-related toxicities. These complexities can be incorporated into mathematical and computational models of cancer immunotherapy that can then be used to aid in rational therapy design. In this review, we survey modeling approaches under the umbrella of the major challenges facing immunotherapy development, which encompass tumor classification, optimal treatment scheduling, and combination therapy design. Although overlapping, each challenge has presented unique opportunities for modelers to make contributions using analytical and numerical analysis of model outcomes, as well as optimization algorithms. We discuss several examples of models that have grown in complexity as more biological information has become available, showcasing how model development is a dynamic process interlinked with the rapid advances in tumor-immune biology. We conclude the review with recommendations for modelers both with respect to methodology and biological direction that might help keep modelers at the forefront of cancer immunotherapy development.Comment: Accepted for publication in the Journal of the Royal Society Interfac
    • 

    corecore