4 research outputs found

    Arabic named entity recognition using deep learning approach

    Get PDF
    Most of the Arabic Named Entity Recognition (NER) systems depend massively on external resources and handmade feature engineering to achieve state-of-the-art results. To overcome such limitations, we proposed, in this paper, to use deep learning approach to tackle the Arabic NER task. We introduced a neural network architecture based on bidirectional Long Short-Term Memory (LSTM) and Conditional Random Fields (CRF) and experimented with various commonly used hyperparameters to assess their effect on the overall performance of our system. Our model gets two sources of information about words as input: pre-trained word embeddings and character-based representations and eliminated the need for any task-specific knowledge or feature engineering. We obtained state-of-the-art result on the standard ANERcorp corpus with an F1 score of 90.6%

    Tune your brown clustering, please

    Get PDF
    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly unexplored. Accordingly, we present information for practitioners on the behaviour of Brown clustering in order to assist hyper-parametre tuning, in the form of a theoretical model of Brown clustering utility. This model is then evaluated empirically in two sequence labelling tasks over two text types. We explore the dynamic between the input corpus size, chosen number of classes, and quality of the resulting clusters, which has an impact for any approach using Brown clustering. In every scenario that we examine, our results reveal that the values most commonly used for the clustering are sub-optimal
    corecore