314 research outputs found

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Performance Evaluation of Communication Technologies and Network Structure for Smart Grid Applications

    Get PDF
    The design of an effective and reliable communication network supporting smart grid applications requires the selection of appropriate communication technologies and protocols. The objective of this study is to study and quantify the capabilities of an advanced metring infrastructure (AMI) to support the simultaneous operation of major smart grid functions. These include smart metring, price-induced controls, distribution automation, demand response, and electric vehicle charging/discharging applications in terms of throughput and latency. OPNET is used to simulate the performance of selected communication technologies and protocols. Research findings indicate that smart grid applications can operate simultaneously by piggybacking on an existing AMI infrastructure and still achieve their latency requirements

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    Survey on Wi-Fi and Cellular Communication Technology for Advanced Metering Infrastructure (AMI) in a Developing Economy

    Get PDF
    Traditional energy meters have suffered from a lack of automated analysis and inaccuracy in reading energy consumption, which has brought about smart metering systems. Developing economies such as in Africa. still experience a setback in electricity monitoring and load distribution because of existing traditional meter systems in use. Communication technologies play an important role to improve the monitoring of energy consumption and ensure a road map toward a smart grid. This paper reviews communication technologies used for Advanced Metering Infrastructure (AMI) emphasizing Wi-Fi and Cellular technologies. Metrics used to evaluate their performance include cost, energy efficiency, coverage, deployment, latency, payload, and scalability. The review presents a benchmark for research on AMI communication technologies in developing economies. When adopted, the expected AMI benefits are reduced energy theft, cost efficiency, real-time analysis, security, and safety of energy supply in developing economies

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Implementation of AMI Systems in CFE-Distribution, Mexico

    Get PDF
    The Smart Grid concept has been conceived as the integration of the electrical grid (generation, transmission and distribution) and the communications network of an electric utility. Although, traditional communications interfaces, protocols and standards has been used in the electrical grid in an isolated manner, modern communications networks are considered as the fundamental enabling technologies within a Smart Grid environment. Emerging communications technologies, protocol architectures and standards can help to build a common communications network infrastructure for data transport between customer premises, power substations, power distribution systems, utility control centers and utility data centers. The Smart Grid will support traditional applications such as supervisory control and data acquisition (SCADA), distribution automation (DA), energy management systems (EMS), demand site management (DSM) and automated meter reading (AMR), etc., as well as new applications like advanced metering infrastructure (AMI), substation automation (SA), microgrids, distributed generation (DG), grid monitoring and control, data storage and analysis, among others. To make this possible, the Smart Grid requires a two-way wide area communications network between different dispersed areas, from generation to consumer premises. An AMI system uses communication technologies for smart meter reading several times a day to get data consumption of electricity, as well as sending outage alarm information and meter tampering almost in real time, from the meter to the control center. Currently, there are various communication technologies to implement AMI systems. This paper presents an overview of the most relevant communications technologies that can be used to implement AMI communications infrastructure such as neighborhood area networks (NAN), field area networks (FAN) and wide area networks (WAN) using different transmission media such as fiber optics, spread spectrum radio frequency, microwave, WiMax, Wi-Fi, ZigBee, cellular, and power line carrier. In addition, a review of the current state of various AMI projects around the world, including the progress in the implementation of AMI systems in Mexico, besides the evaluation performance of CFE´s AMI networks

    Future strategic plan analysis for integrating distributed renewable generation to smart grid through wireless sensor network: Malaysia prospect

    Get PDF
    AbstractIntegration of Distributed Renewable Generation (DRG) to the future Smart Grid (SG) is one of the important considerations that is highly prioritized in the SG development roadmap by most of the countries including Malaysia. The plausible way of this integration is the enhancement of information and bidirectional communication infrastructure for energy monitoring and controlling facilities. However, urgency of data delivery through maintaining critical time condition is not crucial in these facilities. In this paper, we have surveyed state-of-the-art protocols for different Wireless Sensor Networks (WSNs) with the aim of realizing communication infrastructure for DRG in Malaysia. Based on the analytical results from surveys, data communication for DRG should be efficient, flexible, reliable, cost effective, and secured. To meet this achievement, IEEE802.15.4 supported ZigBee PRO protocol together with sensors and embedded system is shown as Wireless Sensor (WS) for DRG bidirectional network with prospect of attaining data monitoring facilities. The prospect towards utilizing ZigBee PRO protocol can be a cost effective option for full integration of intelligent DRG and small scale Building-Integrated Photovoltaic (BIPV)/Feed-in-Tariff (FiT) under SG roadmap (Phase4: 2016–2017) conducted by Malaysia national utility company, Tenaga Nasional Berhad (TNB). Moreover, we have provided a direction to utilize the effectiveness of ZigBee-WS network with the existing optical communication backbone for data importing from the end DRG site to the TNB control center. A comparative study is carried out among developing countries on recent trends of SG progress which reveals that some common projects like smart metering and DRG integration are on priority

    Wide Area Measurement Systems

    Get PDF

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions
    • …
    corecore