55,501 research outputs found

    Interactions in Visualizations to Support Knowledge Activation

    Get PDF
    Humans have several exceptional abilities, one of which is the perceptual tasks of their visual sense. Humans have the unique ability to perceive data and identify patterns, trends, and outliers. This research investigates the design of interactive visualizations to identify the benefits of interacting with information. The research question leading the investigation is how does interacting with visualizations support analytical reasoning of emergent information to activate knowledge? The study uses the theory of distributed cognition and human-information interaction to apply the design science research framework. The motivation behind the research is to identify guidelines for interactive visualizations to enhance a user’s ability to make decisions in dynamic situations and apply knowledge gleaned from the visualization. An experiment is used to analyze the use of an interactive dashboard in a dynamic decision-making situation. The results of this experiment specifically look at the combination of interactions as they support the distribution of cognition over three spaces of a human-visualization cognitive system. The results provide insight into the benefits that interactions have for enhancing analytical reasoning, expanding the use of visualizations beyond communicating or disseminating information. Providing a broad range of interactions that work with multiple views of information increases the opportunities that users have to complete tasks. This research contributes to the information visualization discipline by expanding the focus from representing data to representing and interacting with information. Secondly, my results provide an example of a qualitative assessment based on the value of visualization, in comparison to traditional usability assessment

    CoMoVA - A comprehension measurement framework for visualization systems

    Get PDF
    Despite the burgeoning interest shown in visualizations by many disciplines, there yet remains the unresolved question concerning comprehension. Is the concept that is being communicated through the visual easily grasped and clearly interpreted? Visual comprehension is that characteristic of any visualization system, which deals with how efficiently and effectively users are able to grasp the underlying concepts through suitable interactions provided for exploring the visually represented information. Comprehension has been considered a very complex subject, which is intangible and subjective in nature. Assessment of comprehension can help to determine the true usefulness of visualization systems to the intended users. A principal contribution of this research is the formulation of an empirical evaluation framework for systematically assessing comprehension support provided by a visualization system to its intended users. To assess comprehension i.e. to measure this seemingly immeasurable factor of visualization systems, we propose a set of criteria based on a detailed analysis of information flow from the raw data to the cognition of information in human mind. Our comprehension criteria are adapted from the pioneering work of two eminent researchers - Donald A. Norman and Aaron Marcus, who have investigated the issues of human perception and cognition, and visual effectiveness respectively. The proposed criteria have been refined with the help of opinions from experts. To gauge and verify the efficacy of these criteria in a practical sense, they were then applied to a bioinformatics visualization study tool and an immersive art visualization environment. Given the vast variety of users and their visualization goals, it may be noted that it is difficult for one to decide on the effectiveness of different visualization tools/techniques in a context independent fashion. We therefore propose an innovative way of evaluating a visualization technique by encapsulating it in a visualization pattern where it is seen as a solution to the visualization problem in a specific context. These visualization patterns guide the tool users/evaluators to compare, understand and select appropriate visualization tools/techniques. Lastly, we propose a novel framework named as CoMoVA (Comprehension Model for Visualization Assessment) that incorporates 'context of use', visualization patterns, visual design principles and important cognitive principles into a coherent whole that can be used to effectively tell us in a more quantifiable manner the benefits of visual representations and interactions provided by a system to the intended audience. Our approach of evaluation of visualization systems is similar to other questionnaire-based approaches such as SUMI (Software Usability Measurement Inventory), where all the questions deal with the measurement of a common trait. We apply this framework to two static software visualization tools in the software visualization domain to demonstrate the practical benefits of using such a framework

    What May Visualization Processes Optimize?

    Full text link
    In this paper, we present an abstract model of visualization and inference processes and describe an information-theoretic measure for optimizing such processes. In order to obtain such an abstraction, we first examined six classes of workflows in data analysis and visualization, and identified four levels of typical visualization components, namely disseminative, observational, analytical and model-developmental visualization. We noticed a common phenomenon at different levels of visualization, that is, the transformation of data spaces (referred to as alphabets) usually corresponds to the reduction of maximal entropy along a workflow. Based on this observation, we establish an information-theoretic measure of cost-benefit ratio that may be used as a cost function for optimizing a data visualization process. To demonstrate the validity of this measure, we examined a number of successful visualization processes in the literature, and showed that the information-theoretic measure can mathematically explain the advantages of such processes over possible alternatives.Comment: 10 page

    Visualisation techniques, human perception and the built environment

    Get PDF
    Historically, architecture has a wealth of visualisation techniques that have evolved throughout the period of structural design, with Virtual Reality (VR) being a relatively recent addition to the toolbox. To date the effectiveness of VR has been demonstrated from conceptualisation through to final stages and maintenance, however, its full potential has yet to be realised (Bouchlaghem et al, 2005). According to Dewey (1934), perceptual integration was predicted to be transformational; as the observer would be able to ‘engage’ with the virtual environment. However, environmental representations are predominately focused on the area of vision, regardless of evidence stating that the experience is multi sensory. In addition, there is a marked lack of research exploring the complex interaction of environmental design and the user, such as the role of attention or conceptual interpretation. This paper identifies the potential of VR models to aid communication for the Built Environment with specific reference to human perception issues
    • 

    corecore