403,395 research outputs found

    Non-functional requirements: size measurement and testing with COSMIC-FFP

    Get PDF
    The non-functional requirements (NFRs) of software systems are well known to add a degree of uncertainty to process of estimating the cost of any project. This paper contributes to the achievement of more precise project size measurement through incorporating NFRs into the functional size quantification process. We report on an initial solution proposed to deal with the problem of quantitatively assessing the NFR modeling process early in the project, and of generating test cases for NFR verification purposes. The NFR framework has been chosen for the integration of NFRs into the requirements modeling process and for their quantitative assessment. Our proposal is based on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. Also in this paper, we extend the use of COSMIC-FFP for NFR testing purposes. This is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the merits of the proposed approach and the open questions related to its design

    A novel model of learning in design

    Get PDF
    Learning in design is a phenomenon that has been observed in design practice by many researchers. The observation that designers learn is supported by protocol studies in design that experienced designers can reach satisfactory design solutions more effectively than novice/naive designers. That there was no comprehensive model or theory of learning in design to explain the phenomenon was identified by Sim. Hence a need was raised to develop a comprehensive model of learning in design that can describe the phenomenon and therefore serve as a basis to develop effective and efficient design support system(s)

    Early Quantitative Assessment of Non-Functional Requirements

    Get PDF
    Non-functional requirements (NFRs) of software systems are a well known source of uncertainty in effort estimation. Yet, quantitatively approaching NFR early in a project is hard. This paper makes a step towards reducing the impact of uncertainty due to NRF. It offers a solution that incorporates NFRs into the functional size quantification process. The merits of our solution are twofold: first, it lets us quantitatively assess the NFR modeling process early in the project, and second, it lets us generate test cases for NFR verification purposes. We chose the NFR framework as a vehicle to integrate NFRs into the requirements modeling process and to apply quantitative assessment procedures. Our solution proposal also rests on the functional size measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard. We extend its use for NFR testing purposes, which is an essential step for improving NFR development and testing effort estimates, and consequently for managing the scope of NFRs. We discuss the advantages of our approach and the open questions related to its design as well

    Re-using knowledge : why, what and where

    Get PDF
    Previously the 're-use' focus has centred on specific and/or standard parts, more recently however, [standard components] are being developed...to enable both the re-use of the part and the experience associated with that part'. This notion is further extended by Finger who states that 'designers may re-use a prior design in it's entirety,...may re-use an existing shape for a different function, or may re-use a feature from another design'. Reinforcing this notion we currently consider re-use to reflect the utilisation of any knowledge gained from a design activity and not just past designs of artefacts. Our research concerns the improvement of formal 're-use' support and as such we have identified a need to gain a better understanding of how design knowledge can be utilised to support 're-use'. Thus, we discuss the requirements of successful 're-use' and attempt to ascertain within this skeleton: what knowledge can be re-used; how to maximise its' applicability; and where and when it can be utilised in new design

    An Empirical Study on Decision making for Quality Requirements

    Full text link
    [Context] Quality requirements are important for product success yet often handled poorly. The problems with scope decision lead to delayed handling and an unbalanced scope. [Objective] This study characterizes the scope decision process to understand influencing factors and properties affecting the scope decision of quality requirements. [Method] We studied one company's scope decision process over a period of five years. We analyzed the decisions artifacts and interviewed experienced engineers involved in the scope decision process. [Results] Features addressing quality aspects explicitly are a minor part (4.41%) of all features handled. The phase of the product line seems to influence the prevalence and acceptance rate of quality features. Lastly, relying on external stakeholders and upfront analysis seems to lead to long lead-times and an insufficient quality requirements scope. [Conclusions] There is a need to make quality mode explicit in the scope decision process. We propose a scope decision process at a strategic level and a tactical level. The former to address long-term planning and the latter to cater for a speedy process. Furthermore, we believe it is key to balance the stakeholder input with feedback from usage and market in a more direct way than through a long plan-driven process

    Business process modelling and visualisation to support e-government decision making: Business/IS alignment

    Get PDF
    © 2017 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/978-3-319-57487-5_4.Alignment between business and information systems plays a vital role in the formation of dependent relationships between different departments in a government organization and the process of alignment can be improved by developing an information system (IS) according to the stakeholders’ expectations. However, establishing strong alignment in the context of the eGovernment environment can be difficult. It is widely accepted that business processes in the government environment plays a pivotal role in capturing the details of IS requirements. This paper presents a method of business process modelling through UML which can help to visualise and capture the IS requirements for the system development. A series of UML models have been developed and discussed. A case study on patient visits to a healthcare clinic in the context of eGovernment has been used to validate the models
    • …
    corecore