2 research outputs found

    Analysis and Design of a Transmitter for Wireless Communications in CMOS Technology

    Get PDF
    The number of wireless devices has grown tremendously over the last decade. Great technology improvements and novel transceiver architectures and circuits have enabled an astonishingly expanding set of radio-frequency applications. CMOS technology played a key role in enabling a large-scale diffusion of wireless devices due to its unique advantages in cost and integration. Novel digital-intensive transceivers have taken full advantage of CMOS technology scaling predicted by Moore's law. Die-shrinking has enabled ubiquitous diffusion of low-cost, small form factor and low power wireless devices. However, Radio Frequency (RF) Power Amplifiers (PA) transceiver functionality is historically implemented in a module which is separated from the CMOS core of the transceiver. The PA is traditionally dictating power and battery life of the transceiver, thus justifying its implementation in a tailored technology. By contrast, a fully integrated CMOS transceiver with no external PA would hugely benefit in terms of reduced area and system complexity. In this work, a fully integrated prototype of a Switched-Capacitor Power Amplifier (SCPA) has been implemented in a 28nm CMOS technology. The SCPA provides the functionalities of a PA and of a Radio-Frequency Digital-to-Analog Converter (RF-DAC) in a monolithic CMOS device. The switching output stage of the SCPA enables this circuital topology to reach high efficiencies and offers excellent power handling capabilities. In this work, the properties of the SCPA are analyzed in an extensive and detailed dissertation. Nowadays Wireless Communications operate in a very crowded spectrum, with strict coexistence requirements, thus demanding a strong linearity to the RF-DAC section of the SCPA. A great part of the work of designing a good SCPA is in fact designing a good RF-DAC. To enhance RF-DAC linearity, a precision of the timing of the elements up to the ps range is required. The use of a single core-supply voltage in the whole circuit including the CMOS inverter of the switching output stage enables the use of minimum size devices, improving accuracy and speed in the timing of the elements. The whole circuit operates therefore on low core-supply voltage. Throughout this work, a detailed analysis carefully describes the electromagnetic structures which maximize power and efficiency of low-voltage SCPAs. Due to layout issues subsequent to limited available voltages, however, there is a practical limitation in the maximum achievable power of low-voltage SCPAs. In this work, a Multi-Port Monolithic Power Combiner (PC) is introduced to overcome this limitation and further enhance total achieved system power. The PC sums the power of a collection of SCPAs to a single output, allowing higher output powers at a high efficiency. Benefits, drawbacks and design of SCPA PCs are discussed in this work. The implemented circuit features the combination of four differential SCPAs through a four-way monolithic PC and is simulated to obtain a maximum drain efficiency of 44% at a peak output power of 29dBm on 1.1V supply voltage. Extensive spectrum analysis offers full evaluation of system performances. After exploring state-of-the-art possibilities offered by an advanced 28nm CMOS technology, this work predicts through rigorous theoretical analysis the expected evolution of SCPA performances with the scaling of CMOS Technologies. The encouraging forecast further emphasizes the importance of SCPA circuits for the future of high-performance Wireless Communications

    Analysis and Design of CMOS Radio-Frequency Power Amplifiers

    Get PDF
    The continuous advancement of semiconductor technologies, especially CMOS technology, has enabled exponential growth of the wireless communication industry. This explosive growth in turn has completely changed people’s lives. The CMOS feature size scale down greatly benefits digital logic integrations, which result in more powerful, versatile, and economical digital signal processing. Further research and development has pushed analog, mixed-signal, and even radio-frequency (RF) circuit blocks to be implemented and integrated in CMOS. Future generations of wireless communication call for even further level of integration, and as of now, the only circuit block that is rarely integrated in CMOS along with other parts of the system is the power amplifier (PA). Due to the fact that the PA in a wireless communication system is the most power-hungry circuit block, the integration of RF PA in CMOS would potentially not only save the cost of the wireless communication system real estate, but also reduce power consumption since die-to-die connection loss can be eliminated. RF PA design involves handling large amounts of voltage and current at the radio frequencies, which in the present wireless communication standards are in the range of giga-hertz. Therefore, a good understanding of many aspects related to RF PA design is necessary. Theoretical analysis of the communication system, nonlinear effects of the PA, as well as the impedance matching network is systematically presented. The analysis of the nonlinear effects proposes a formal mathematical description of the multitone nonlinearity, and through its relationship with two-tone test, the proposed PA design methodology would greatly reduce the design time while improving the design accuracy. A thorough analysis of the available architecture and design techniques for efficiency and linearity enhancement of RF PA shows that despite tremendous amounts of research and development into this topic, the fundamental tradeoff between the two still limits the RF PA implementation largely within SiGe, GaAs, and InP technologies. A RF PA for Wideband Code-Division Multiple Access (WCDMA) application standard is proposed, designed, and implemented in CMOS that demonstrates the proposed segmentation technique that resolved the main tradeoff between power efficiency and linearity. The innovative architecture developed in this work is not limited to applications in the WCDMA communication protocol or the CMOS technology, although CMOS implementation would take advantage of the readily available digital resources
    corecore