149 research outputs found

    Turbulence-driven ion beams in space plasmas

    Get PDF
    The description of the local turbulent energy transfer and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission together provide a formidable tool to explore the cross-scale connection between the fluid-scale energy cascade and plasma processes at subion scales. When the small-scale energy transfer is dominated by Alfv´enic, correlated velocity, and magnetic field fluctuations, beams of accelerated particles are more likely observed. Both space observations and numerical simulations suggest the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    Towards optimal explicit time-stepping schemes for the gyrokinetic equations

    Full text link
    The nonlinear gyrokinetic equations describe plasma turbulence in laboratory and astrophysical plasmas. To solve these equations, massively parallel codes have been developed and run on present-day supercomputers. This paper describes measures to improve the efficiency of such computations, thereby making them more realistic. Explicit Runge-Kutta schemes are considered to be well suited for time-stepping. Although the numerical algorithms are often highly optimized, performance can still be improved by a suitable choice of the time-stepping scheme, based on spectral analysis of the underlying operator. Here, an operator splitting technique is introduced to combine first-order Runge-Kutta-Chebychev schemes for the collision term with fourth-order schemes for the remaining terms. In the nonlinear regime, based on the observation of eigenvalue shifts due to the (generalized) E×BE\times B advection term, an accurate and robust estimate for the nonlinear timestep is developed. The presented techniques can reduce simulation times by factors of up to three in realistic cases. This substantial speedup encourages the use of similar timestep optimized explicit schemes not only for the gyrokinetic equation, but also for other applications with comparable properties.Comment: 11 pages, 5 figures, accepted for publication in Computer Physics Communication

    Trinity: A Unified Treatment of Turbulence, Transport, and Heating in Magnetized Plasmas

    Get PDF
    To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolution of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles global simulations are very challenging using conventional (brute force) techniques. In this thesis, the problem of resolving turbulence is addressed by developing velocity space resolution diagnostics and an adaptive collisionality that allow for the confident simulation of velocity space dynamics using the approximate minimal necessary dissipation. With regard to the wide range of scales, a new approach has been developed in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using transport equations to obtain self-consistent, steady-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional global simulations. Furthermore, an advanced model physical collision operator for gyrokinetics has been derived and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied. To demonstrate the utility of the coupled flux tube approach, preliminary results from Trinity simulations of the core of an ITER plasma are presented.Comment: 187 pages, 53 figures, Ph.D. thesis in physics at University of Maryland, single-space versio

    ViDA: a VlasovDArwin solver for plasma physics at electron scales

    Get PDF
    We present a Vlasov–DArwin numerical code (ViDA) specifically designed to address plasma physics problems, where small-scale high accuracy is requested even during the nonlinear regime to guarantee a clean description of the plasma dynamics at fine spatial scales. The algorithm provides a low-noise description of proton and electron kinetic dynamics, by splitting in time the multi-advection Vlasov equation in phase space. Maxwell equations for the electric and magnetic fields are reorganized according to the Darwin approximation to remove light waves. Several numerical tests show that ViDA successfully reproduces the propagation of linear and nonlinear waves and captures the physics of magnetic reconnection. We also discuss preliminary tests of the parallelization algorithm efficiency, performed at CINECA on the Marconi-KNL cluster. ViDA will allow the running of Eulerian simulations of a non-relativistic fully kinetic collisionless plasma and it is expected to provide relevant insights into important problems of plasma astrophysics such as, for instance, the development of the turbulent cascade at electron scales and the structure and dynamics of electron-scale magnetic reconnection, such as the electron diffusion region

    Collisions in Global Gyrokinetic Simulations of Tokamak Plasmas using the Delta-f Particle-In-Cell Approach:Neoclassical Physics and Turbulent Transport

    Get PDF
    The present work takes place within the general context of research related to the development of nuclear fusion energy. More specifically, this thesis is mainly a numerical and physical contribution to the understanding of turbulence and associated transport phenomena occuring in tokamak plasmas, the most advanced and promising form of magnetically confined plasmas. The complexity of tokamak plasma phenomena and related physical models, either fluid or kinetic, requires the development of numerical codes to perform simulations of the plasma behaviour under given conditions defined by the magnetic geometry as well as density and temperature profiles. The studies presented in this work are based on electrostatic kinetic simulations, taking advantage of a reduced kinetic model (the gyrokinetic model) which is particularly suitable for studying turbulent transport in magnetically confined plasmas, in effect solving an approximate form of the Vlasov equation for the distribution function of each species (electrons, ions) along with a reduced form of the Poisson equation providing the self-consistent electric fields. The main tool of this work, the gyrokinetic ORB5 code making use of numerical particles according to the Particle-In-Cell (PIC) method, has been upgraded during this thesis with different linearized collision operators related to both ions and electrons. The BIRDIE code, enabling to study collisional effects on the evolution of Langmuir waves in an unmagnetized plasma, has been written in order to serve as a test-bed for the collision operators ultimately implemented in ORB5. Some essential algorithms related to collisional simulations have been jointly implemented, such as the two-weight scheme which is extensively described in this work. The collision operators in ORB5 have been further carefully tested through neoclassical simu- lations and benchmarked against other codes, providing reliable levels of collisional transport. Together with different procedures controlling the numerical noise, the collision operators have then been applied to the study of collisional turbulent transport in two different regimes, the Ion-Temperature-Gradient (ITG) regime and the Trapped-Electron-Mode (TEM) regime re- quiring a trapped electron kinetic response. Although not dominant in core tokamak plasmas, collisional effects nevertheless lead to interesting modifications in the turbulence behaviour which are not captured by the often considered collisionless gyrokinetic models. The so-called coarse-graining procedure, a noise-control algorithm which is suitable for collisional gyrokinetic simulations with particles, is shown to enable carrying out relevant simulations over many col- lision times. Consequently, reliable conclusions regarding turbulent transport in the presence of collisions could be drawn in this thesis. Namely, the turbulent transport in the ITG regime is found to be enhanced by ion collisions through interactions with so-called zonal flows as- sociated to axisymmetric modes, while it is reduced by electron collisions in the TEM regime through electron detrapping processes. The zonal flow dynamics in collisionless and collisional ITG turbulence simulations is studied, emphasizing the limitation of the zonal flow level due to Kelvin-Helmoltz-type instabilities. Additionally, some purely collisionless issues related to tokamak physics are discussed, such as the finite plasma size effects in TEM-dominated regime which are found to be important in non-linear simulations but unimportant in linear simu- lations. The role of zonal flows in temperature-gradient-driven TEM turbulence saturation is confirmed to be weak, in agreement with previous studies. Finally, a realistic global gy- rokinetic simulation, accounting for a proper TCV tokamak magnetic equilibrium and related experimental profiles, has been successfully carried out thus demonstrating the relevance of the ORB5 code for predictions related to physics of real tokamaks. A good agreement with GAM experimental measurements is indeed obtained

    GENE-3D - ein globaler gyrokinetischer Turbulenzcode für Stellaratoren und gestörte Tokamaks

    Get PDF
    This thesis describes the development and application of GENE-3D, a global gyrokinetic turbulence HPC code for stellarators. The gyrokinetic equations as well as their implementation and the use of field-aligned coordinates in non-axisymmetric geometries are discussed. GENE-3D is benchmarked for validity and performance. Different geometries of Wendelstein 7-X are investigated for their influence on turbulent properties. Also the influence of the machine size on linear growth rates is studied.Diese Arbeit beschreibt die Entwicklung und Anwendung von GENE-3D, ein globaler gyrokinetischer Turbulenzcode für Stellaratoren. Die gyrokinetischen Gleichungen sowie deren Implementierung und das am Feld ausgerichtete Koordinatensystem werden für nicht-axisymmetrische Geometrien vorgestellt. GENE-3D wird auf Korrektheit getestet.Der Einfluß unterschiedlicher Wendelstein 7-X Geometrien auf den turbulenten Transport und der Einfluß der Maschinengröße auf die linearen Anwachsraten wird untersucht
    corecore