2 research outputs found

    Design of a novel passive Binary-Controlled Variable Stiffness Joint (BpVSJ) towards passive haptic interface application

    Get PDF
    In this paper we present the design, development and experimental validation of a novel Binary-Controlled Variable Stiffness Joint (BpVSJ) towards haptic teleoperation and human interaction manipulators applications. The proposed actuator is a proof of concept of a passive revolute joint, where the working principle is based on the recruitment of series-parallel elastic elements. The novelty of the system lies in its design topology, including the capability to involve an (n) number of series-parallel elastic elements to achieve (2n) levels of stiffness, as compared to current approaches. Accordingly, the level of stiffness can be altered at any position without the need to revert to the initial equilibrium position. The BpVSJ has low energy consumption and short switching time, and is able to rotate freely at zero stiffness without limitations. Further smart features include scalability and relative compactness. This paper details the mathematical stiffness modeling of the proposed actuator mechanism, as well as the experimentally measured performance characteristics. The experimental results matched well with the physical-based modeling in terms of stiffness variation levels. Moreover, Psychophysical experiments were also conducted using (20) healthy subjects in order to evaluate the capability of the BpVSJ to display three different levels of stiffness that are cognitively realized by the users. The participants performed two tasks: a relative cognitive task and an absolute cognitive task. The results show that the BpVSJ is capable of rendering stiffness with high average relative accuracy (Relative Cognitive Task relative accuracy is 97.3%, and Absolute Cognitive Task relative accuracy is 83%)

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications
    corecore