4,236 research outputs found

    A Survey on Forensics and Compliance Auditing for Critical Infrastructure Protection

    Get PDF
    The broadening dependency and reliance that modern societies have on essential services provided by Critical Infrastructures is increasing the relevance of their trustworthiness. However, Critical Infrastructures are attractive targets for cyberattacks, due to the potential for considerable impact, not just at the economic level but also in terms of physical damage and even loss of human life. Complementing traditional security mechanisms, forensics and compliance audit processes play an important role in ensuring Critical Infrastructure trustworthiness. Compliance auditing contributes to checking if security measures are in place and compliant with standards and internal policies. Forensics assist the investigation of past security incidents. Since these two areas significantly overlap, in terms of data sources, tools and techniques, they can be merged into unified Forensics and Compliance Auditing (FCA) frameworks. In this paper, we survey the latest developments, methodologies, challenges, and solutions addressing forensics and compliance auditing in the scope of Critical Infrastructure Protection. This survey focuses on relevant contributions, capable of tackling the requirements imposed by massively distributed and complex Industrial Automation and Control Systems, in terms of handling large volumes of heterogeneous data (that can be noisy, ambiguous, and redundant) for analytic purposes, with adequate performance and reliability. The achieved results produced a taxonomy in the field of FCA whose key categories denote the relevant topics in the literature. Also, the collected knowledge resulted in the establishment of a reference FCA architecture, proposed as a generic template for a converged platform. These results are intended to guide future research on forensics and compliance auditing for Critical Infrastructure Protection.info:eu-repo/semantics/publishedVersio

    Enhancing Smart City Services with AI: A Field Experiment in the Context of Industry 5.0

    Get PDF
    The practical effects of incorporating artificial intelligence (AI) into Industry 5.0 smart city services are made evident by this empirical research. The use of AI-powered smart traffic management yields a noteworthy 32.94% rise in traffic volume, signifying a noteworthy progression towards improved urban mobility. AI waste management optimization results in a 5.71% increase in collection efficiency, highlighting the importance of operational effectiveness and resource conservation. The control of energy use shows an 8.57% decrease, confirming AI's importance in sustainable energy practices. AI-enhanced public safety offers dependable event prediction, indicating safer cityscapes. These results highlight AI's revolutionary potential and establish smart cities as safe, secure, and sustainable urban environments

    Speech-based automatic depression detection via biomarkers identification and artificial intelligence approaches

    Get PDF
    Depression has become one of the most prevalent mental health issues, affecting more than 300 million people all over the world. However, due to factors such as limited medical resources and accessibility to health care, there are still a large number of patients undiagnosed. In addition, the traditional approaches to depression diagnosis have limitations because they are usually time-consuming, and depend on clinical experience that varies across different clinicians. From this perspective, the use of automatic depression detection can make the diagnosis process much faster and more accessible. In this thesis, we present the possibility of using speech for automatic depression detection. This is based on the findings in neuroscience that depressed patients have abnormal cognition mechanisms thus leading to the speech differs from that of healthy people. Therefore, in this thesis, we show two ways of benefiting from automatic depression detection, i.e., identifying speech markers of depression and constructing novel deep learning models to improve detection accuracy. The identification of speech markers tries to capture measurable depression traces left in speech. From this perspective, speech markers such as speech duration, pauses and correlation matrices are proposed. Speech duration and pauses take speech fluency into account, while correlation matrices represent the relationship between acoustic features and aim at capturing psychomotor retardation in depressed patients. Experimental results demonstrate that these proposed markers are effective at improving the performance in recognizing depressed speakers. In addition, such markers show statistically significant differences between depressed patients and non-depressed individuals, which explains the possibility of using these markers for depression detection and further confirms that depression leaves detectable traces in speech. In addition to the above, we propose an attention mechanism, Multi-local Attention (MLA), to emphasize depression-relevant information locally. Then we analyse the effectiveness of MLA on performance and efficiency. According to the experimental results, such a model can significantly improve performance and confidence in the detection while reducing the time required for recognition. Furthermore, we propose Cross-Data Multilevel Attention (CDMA) to emphasize different types of depression-relevant information, i.e., specific to each type of speech and common to both, by using multiple attention mechanisms. Experimental results demonstrate that the proposed model is effective to integrate different types of depression-relevant information in speech, improving the performance significantly for depression detection

    Distributed Ledger Technology (DLT) Applications in Payment, Clearing, and Settlement Systems:A Study of Blockchain-Based Payment Barriers and Potential Solutions, and DLT Application in Central Bank Payment System Functions

    Get PDF
    Payment, clearing, and settlement systems are essential components of the financial markets and exert considerable influence on the overall economy. While there have been considerable technological advancements in payment systems, the conventional systems still depend on centralized architecture, with inherent limitations and risks. The emergence of Distributed ledger technology (DLT) is being regarded as a potential solution to transform payment and settlement processes and address certain challenges posed by the centralized architecture of traditional payment systems (Bank for International Settlements, 2017). While proof-of-concept projects have demonstrated the technical feasibility of DLT, significant barriers still hinder its adoption and implementation. The overarching objective of this thesis is to contribute to the developing area of DLT application in payment, clearing and settlement systems, which is still in its initial stages of applications development and lacks a substantial body of scholarly literature and empirical research. This is achieved by identifying the socio-technical barriers to adoption and diffusion of blockchain-based payment systems and the solutions proposed to address them. Furthermore, the thesis examines and classifies various applications of DLT in central bank payment system functions, offering valuable insights into the motivations, DLT platforms used, and consensus algorithms for applicable use cases. To achieve these objectives, the methodology employed involved a systematic literature review (SLR) of academic literature on blockchain-based payment systems. Furthermore, we utilized a thematic analysis approach to examine data collected from various sources regarding the use of DLT applications in central bank payment system functions, such as central bank white papers, industry reports, and policy documents. The study's findings on blockchain-based payment systems barriers and proposed solutions; challenge the prevailing emphasis on technological and regulatory barriers in the literature and industry discourse regarding the adoption and implementation of blockchain-based payment systems. It highlights the importance of considering the broader socio-technical context and identifying barriers across all five dimensions of the social technical framework, including technological, infrastructural, user practices/market, regulatory, and cultural dimensions. Furthermore, the research identified seven DLT applications in central bank payment system functions. These are grouped into three overarching themes: central banks' operational responsibilities in payment and settlement systems, issuance of central bank digital money, and regulatory oversight/supervisory functions, along with other ancillary functions. Each of these applications has unique motivations or value proposition, which is the underlying reason for utilizing in that particular use case

    Protecting Privacy in Indian Schools: Regulating AI-based Technologies' Design, Development and Deployment

    Get PDF
    Education is one of the priority areas for the Indian government, where Artificial Intelligence (AI) technologies are touted to bring digital transformation. Several Indian states have also started deploying facial recognition-enabled CCTV cameras, emotion recognition technologies, fingerprint scanners, and Radio frequency identification tags in their schools to provide personalised recommendations, ensure student security, and predict the drop-out rate of students but also provide 360-degree information of a student. Further, Integrating Aadhaar (digital identity card that works on biometric data) across AI technologies and learning and management systems (LMS) renders schools a ‘panopticon’. Certain technologies or systems like Aadhaar, CCTV cameras, GPS Systems, RFID tags, and learning management systems are used primarily for continuous data collection, storage, and retention purposes. Though they cannot be termed AI technologies per se, they are fundamental for designing and developing AI systems like facial, fingerprint, and emotion recognition technologies. The large amount of student data collected speedily through the former technologies is used to create an algorithm for the latter-stated AI systems. Once algorithms are processed using machine learning (ML) techniques, they learn correlations between multiple datasets predicting each student’s identity, decisions, grades, learning growth, tendency to drop out, and other behavioural characteristics. Such autonomous and repetitive collection, processing, storage, and retention of student data without effective data protection legislation endangers student privacy. The algorithmic predictions by AI technologies are an avatar of the data fed into the system. An AI technology is as good as the person collecting the data, processing it for a relevant and valuable output, and regularly evaluating the inputs going inside an AI model. An AI model can produce inaccurate predictions if the person overlooks any relevant data. However, the state, school administrations and parents’ belief in AI technologies as a panacea to student security and educational development overlooks the context in which ‘data practices’ are conducted. A right to privacy in an AI age is inextricably connected to data practices where data gets ‘cooked’. Thus, data protection legislation operating without understanding and regulating such data practices will remain ineffective in safeguarding privacy. The thesis undergoes interdisciplinary research that enables a better understanding of the interplay of data practices of AI technologies with social practices of an Indian school, which the present Indian data protection legislation overlooks, endangering students’ privacy from designing and developing to deploying stages of an AI model. The thesis recommends the Indian legislature frame better legislation equipped for the AI/ML age and the Indian judiciary on evaluating the legality and reasonability of designing, developing, and deploying such technologies in schools

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Navigating to the Island of Hope - a Pacific response to globalisation, environmental degradation and climate change

    Get PDF
    Navigating to the Island of Hope - A Pacific Response to Climate Change, Environmental Degradation and Economic Globalisation in Oceania explores and seeks to understand indigenous responses to the powerful forces of globalisation and climate change through ethnographic research and cultural analysis spanning more than eight years in totality, and the Pacific renaissance concept of the Island of Hope. The Island of Hope serves as a lens, and is of interest both from a scholarly perspective and a praxis perspective, as the Island of Hope is a complex amalgamation and synthesis of Pacific ethics elements, economic justice, communal interconnectedness, cosmology and the Christian idea of heaven on Earth. This dissertation, just as the Island of Hope itself does, aims to critique and offer a unique perspective on a motivating and unifying principle in Oceania, which extends from the personal to international in scope, and explores the political and economic, the religious and spiritual, the local and global, as well as nature conservation and climate change activism. Global connections dictate global obligations
    • …
    corecore