8 research outputs found

    Robust inference for non-destructive one-shot device testing under step-stress model with exponential lifetimes

    Get PDF
    One-shot devices analysis involves an extreme case of interval censoring, wherein one can only know whether the failure time is either before or after the test time. Some kind of one-shot devices do not get destroyed when tested, and so can continue within the experiment, providing extra information for inference, if they did not fail before an inspection time. In addition, their reliability can be rapidly estimated via accelerated life tests (ALTs) by running the tests at varying and higher stress levels than working conditions. In particular, step-stress tests allow the experimenter to increase the stress levels at pre-fixed times gradually during the life-testing experiment. The cumulative exposure model is commonly assumed for step-stress models, relating the lifetime distribution of units at one stress level to the lifetime distributions at preceding stress levels. In this paper, we develop robust estimators and Z-type test statistics based on the density power divergence (DPD) for testing linear null hypothesis for non-destructive one-shot devices under the step-stress ALTs with exponential lifetime distribution. We study asymptotic and robustness properties of the estimators and test statistics, yielding point estimation and conffidence intervals for different lifetime characteristic such as reliability, distribution quantiles and mean lifetime of the devices. A simulation study is carried out to assess the performance of the methods of inference developed here and some real-life data sets are analyzed ffinally for illustrative purpose

    Evolutionary genomics : statistical and computational methods

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    Evolutionary Genomics

    Get PDF
    This open access book addresses the challenge of analyzing and understanding the evolutionary dynamics of complex biological systems at the genomic level, and elaborates on some promising strategies that would bring us closer to uncovering of the vital relationships between genotype and phenotype. After a few educational primers, the book continues with sections on sequence homology and alignment, phylogenetic methods to study genome evolution, methodologies for evaluating selective pressures on genomic sequences as well as genomic evolution in light of protein domain architecture and transposable elements, population genomics and other omics, and discussions of current bottlenecks in handling and analyzing genomic data. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that lead to the best results. Authoritative and comprehensive, Evolutionary Genomics: Statistical and Computational Methods, Second Edition aims to serve both novices in biology with strong statistics and computational skills, and molecular biologists with a good grasp of standard mathematical concepts, in moving this important field of study forward

    MAN - PROFESSOR PAUL BRAN

    Get PDF

    The universe without us: a history of the science and ethics of human extinction

    Get PDF
    This dissertation consists of two parts. Part I is an intellectual history of thinking about human extinction (mostly) within the Western tradition. When did our forebears first imagine humanity ceasing to exist? Have people always believed that human extinction is a real possibility, or were some convinced that this could never happen? How has our thinking about extinction evolved over time? Why do so many notable figures today believe that the probability of extinction this century is higher than ever before in our 300,000-year history on Earth? Exploring these questions takes readers from the ancient Greeks, Persians, and Egyptians, through the 18th-century Enlightenment, past scientific breakthroughs of the 19th century like thermodynamics and evolutionary theory, up to the Atomic Age, the rise of modern environmentalism in the 1970s, and contemporary fears about climate change, global pandemics, and artificial general intelligence (AGI). Part II is a history of Western thinking about the ethical and evaluative implications of human extinction. Would causing or allowing our extinction be morally right or wrong? Would our extinction be good or bad, better or worse compared to continuing to exist? For what reasons? Under which conditions? Do we have a moral obligation to create future people? Would past “progress” be rendered meaningless if humanity were to die out? Does the fact that we might be unique in the universe—the only “rational” and “moral” creatures—give us extra reason to ensure our survival? I place these questions under the umbrella of Existential Ethics, tracing the development of this field from the early 1700s through Mary Shelley’s 1826 novel The Last Man, the gloomy German pessimists of the latter 19th century, and post-World War II reflections on nuclear “omnicide,” up to current-day thinkers associated with “longtermism” and “antinatalism.” In the dissertation, I call the first history “History #1” and the second “History #2.” A main thesis of Part I is that Western thinking about human extinction can be segmented into five distinction periods, each of which corresponds to a unique “existential mood.” An existential mood arises from a particular set of answers to fundamental questions about the possibility, probability, etiology, and so on, of human extinction. I claim that the idea of human extinction first appeared among the ancient Greeks, but was eclipsed for roughly 1,500 years with the rise of Christianity. A central contention of Part II is that philosophers have thus far conflated six distinct types of “human extinction,” each of which has its own unique ethical and evaluative implications. I further contend that it is crucial to distinguish between the process or event of Going Extinct and the state or condition of Being Extinct, which one should see as orthogonal to the six types of extinction that I delineate. My aim with the second part of the book is to not only trace the history of Western thinking about the ethics of annihilation, but lay the theoretical groundwork for future research on the topic. I then outline my own views within “Existential Ethics,” which combine ideas and positions to yield a novel account of the conditions under which our extinction would be bad, and why there is a sense in which Being Extinct might be better than Being Extant, or continuing to exist
    corecore