2,575 research outputs found

    A heuristic to minimize the cardinality of a real-time task set by automated task clustering

    Get PDF
    International audienceWe propose in this paper a method to automatically map functionalities (blocks of code corresponding to high-level features) with real-time constraints to tasks (or threads). We aim at reducing the number of tasks functions are mapped to, while preserving the schedulability of the initial system. We consider independent tasks running on a single processor. Our approach has been applied with fixed-task or fixed-job priorities assigned in a Deadline Monotonic (DM) or a Earliest Deadline First (EDF) manner

    Minimizing a real-time task set through Task Clustering

    Get PDF
    International audienceIn the industry, real-time systems are specified as a set of hundreds of functionalities with timing constraints. Implementing those functionalities as threads in a one-to-one relation is not realistic due to the overhead caused by the large number of threads. In this paper, we present task clustering, which aims at minimizing the number of threads while preserving the schedulability. We prove that our clustering problem is NP-Hard and describe a heuristic to tackle it. Our approach has been applied to fixed-task or fixed-job priority based scheduling policies as Deadline Monotonic (DM) or Earliest Deadline First (EDF)

    Acquiring Word-Meaning Mappings for Natural Language Interfaces

    Full text link
    This paper focuses on a system, WOLFIE (WOrd Learning From Interpreted Examples), that acquires a semantic lexicon from a corpus of sentences paired with semantic representations. The lexicon learned consists of phrases paired with meaning representations. WOLFIE is part of an integrated system that learns to transform sentences into representations such as logical database queries. Experimental results are presented demonstrating WOLFIE's ability to learn useful lexicons for a database interface in four different natural languages. The usefulness of the lexicons learned by WOLFIE are compared to those acquired by a similar system, with results favorable to WOLFIE. A second set of experiments demonstrates WOLFIE's ability to scale to larger and more difficult, albeit artificially generated, corpora. In natural language acquisition, it is difficult to gather the annotated data needed for supervised learning; however, unannotated data is fairly plentiful. Active learning methods attempt to select for annotation and training only the most informative examples, and therefore are potentially very useful in natural language applications. However, most results to date for active learning have only considered standard classification tasks. To reduce annotation effort while maintaining accuracy, we apply active learning to semantic lexicons. We show that active learning can significantly reduce the number of annotated examples required to achieve a given level of performance

    QDEE: Question Difficulty and Expertise Estimation in Community Question Answering Sites

    Full text link
    In this paper, we present a framework for Question Difficulty and Expertise Estimation (QDEE) in Community Question Answering sites (CQAs) such as Yahoo! Answers and Stack Overflow, which tackles a fundamental challenge in crowdsourcing: how to appropriately route and assign questions to users with the suitable expertise. This problem domain has been the subject of much research and includes both language-agnostic as well as language conscious solutions. We bring to bear a key language-agnostic insight: that users gain expertise and therefore tend to ask as well as answer more difficult questions over time. We use this insight within the popular competition (directed) graph model to estimate question difficulty and user expertise by identifying key hierarchical structure within said model. An important and novel contribution here is the application of "social agony" to this problem domain. Difficulty levels of newly posted questions (the cold-start problem) are estimated by using our QDEE framework and additional textual features. We also propose a model to route newly posted questions to appropriate users based on the difficulty level of the question and the expertise of the user. Extensive experiments on real world CQAs such as Yahoo! Answers and Stack Overflow data demonstrate the improved efficacy of our approach over contemporary state-of-the-art models. The QDEE framework also allows us to characterize user expertise in novel ways by identifying interesting patterns and roles played by different users in such CQAs.Comment: Accepted in the Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM 2018). June 2018. Stanford, CA, US
    • …
    corecore