
HAL Id: hal-01016182
https://hal.inria.fr/hal-01016182

Submitted on 28 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A heuristic to minimize the cardinality of a real-time
task set by automated task clustering

Antoine Bertout, Julien Forget, Richard Olejnik

To cite this version:
Antoine Bertout, Julien Forget, Richard Olejnik. A heuristic to minimize the cardinality of a real-
time task set by automated task clustering. Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC 2014), Apr 2014, Gyeongju, South Korea. �10.1145/2554850.2554958�. �hal-
01016182�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49618169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01016182
https://hal.archives-ouvertes.fr

A heuristic to minimize the cardinality of a real-time task set by

automated task clustering

Antoine Bertout, Julien Forget and Richard Olejnik

University Lille1, LIFL

Villeneuve D’Ascq, France

{antoine.bertout,julien.forget,richard.olejnik}@lifl.fr

Abstract

We propose in this paper a method to automatically map

functionalities (blocks of code corresponding to high-

level features) with real-time constraints to tasks (or

threads). We aim at reducing the number of tasks func-

tions are mapped to, while preserving the schedulability

of the initial system. We consider independent tasks run-

ning on a single processor. Our approach has been applied

with fixed-task or fixed-job priorities assigned in a Dead-

line Monotonic (DM) or a Earliest Deadline First (EDF)

manner.

1 Introduction

Our work falls within the scope of real-time systems pro-

gramming. Usually, real-time system developers design

a system as a set of functionalities with real-time con-

straints. A functionality is here considered a block of

code corresponding to a high-level feature. Implement-

ing such systems requires to map each functionality to a

real-time task (thread). On the one hand, the number of

those functionalities is quite high. For instance, it ranges

from 500 to 1000 in the flight control system of an aircraft

or of a space vehicle [7, 11]. On the other hand, a large

number of threads implies a significant time overhead in

context switching [27, 15] and an important memory foot-

print (e.g. task control block, size of the stack, etc.). Thus,

the number of tasks supported by embedded real-time op-

erating systems is limited, rarely over one hundred, and

developers cannot map each functionality to a different

task. This mapping is currently mainly performed man-

ually and, given the number of functionalities to process,

this work can be tedious and error-prone.

In our work, we address this question from the schedul-

ing point of view. We model a system as a set of tasks with

real-time constraints, where each task is characterized by

an execution time, an activation period and a deadline, in

the same way as Liu and Layland’s task model [18]. With

respect to this model, functionalities can simply be con-

sidered as finer grain tasks, while threads are just coarser

tasks. Thus, mapping functionalities to tasks amounts to

gathering several tasks into a single one, which we call

task clustering. Clustering several tasks implies to choose

only one deadline for the cluster, which effectively re-

duces some task deadlines. As a consequence, we have

to check that the system schedulability is preserved after

the clustering.

Related Work In the literature, task clustering is most

often studied in the context of distributed systems imple-

mentation, where it consists in distributing a set of tasks

over a set of computing nodes (processors or cores). This

is different from our context, because in the distributed

systems context a cluster corresponds to the set of tasks

allocated to the same computing resource. For instance,

[23, 1] aim at minimizing communications by clustering

tasks that communicate a lot. The approaches in [22, 13]

cluster tasks based on communications, in order to reduce

the system makespan. The number of tasks of the result-

ing implementation is however not reduced.

Functionality to task mapping is known as runnable-

to-task mapping and is identified as a step of the de-

1

velopment process in the augmented real-time specifica-

tion for AUTomotive Open System ARchitecture (AU-

TOSAR) [5]. This document and [27] also provide guide-

lines defining under which conditions runnables can be

mapped to the same tasks. Authors in [32] propose an

automated mapping in that context, but that work is re-

stricted to functionalities that have deadlines equal to their

periods. In [8, 21], the authors study the multi-task imple-

mentation of multi-periodic synchronous programs and

must allocate the different elements of the program to

tasks. The clustering is out of the scope of [21], while the

heuristic proposed in [8] is very specific to the language

structure.

In [26], authors aim at reducing the number of tasks in

order to reduce the complexity of the scheduling problem.

However, they only focus on functional requirements to

group tasks, without considering timing constraints.

This research Our objective is to automate the task

clustering, so as to reach a minimal task number, while

preserving the system schedulability. The number of pos-

sible clusterings of a task set is equal to the number of

partitions of the set, which is in the range of the Bell num-

ber [24]. The Bell number is exponential with respect to

the cardinality of the set, so given the huge number of pos-

sibilities to explore, we use a greedy heuristic to search

the partitions space. For now, we do not consider com-

munications and the execution platform is made up of a

single processor. These are strong restrictions, which will

be lifted in future work. The aim of the paper is to prop-

erly define the problem and to study it in a simple setting,

so as to serve as a basis for future work.

Organization The rest of the paper is organized as fol-

lows. In Section 2, we describe our clustering model. Sec-

tion 3 is dedicated to the verification of cluster schedula-

bility. We describe the way we generate solutions and

the heuristic applied in Section 4. Section 5 contains the

experimental results conducted on large sets of tasks, ran-

domly generated. Finally, we expose our conclusion and

the future work involved in the Section 6.

2 Problem definition

Our model, illustrated in Figure 1, is based on Liu and

Layland’s model [18]. A system consists of a syn-

chronous (i.e. with offsets equal to zero) set of real-time

tasks S = ({τi(Ci, Di, Ti)}1≤i≤n) where Ci is the worst-

case execution time (WCET) of τi, Ti is the activation pe-

riod, Di is the relative deadline with Di ≤ Ti. We denote

τi.k the (k + 1)th (k ≥ 0) instance, or job, of τi. The job

τi.k is released at time oi.k = kTi. Every job τi.k must be

completed before its absolute deadline di.k = oi.k +Di

oi.0

Ci

di.0Di

oi.1

Ci

di.1Di

oi.2

0

Ti Ti

Figure 1: Task Diagram.

2.1 Scheduling

In this paper, we focus on priority-based scheduling

policies, either fixed-job with Earliest Deadline First

(EDF) [18] or fixed-task priority policies with Deadline

Monotonic (DM) [16].

Let J denote the infinite set of job J = {τi.k, 1 ≤
i ≤ n, k ∈ N}. Given a priority assignment Φ, we define

two functions sΦ, eΦ : J → N, where sΦ(τi.k) is the

start time and eΦ(τi.k) is the completion time of τi.k in

the schedule produced by Φ.

Definition 1. Let S = ({τi}1≤i≤n) be a task set and Φ
be a priority assignment. S is schedulable under Φ if and

only if: ∀τi.k, eΦ(τi.k) ≤ di.k ∧ sΦ(τi.k) ≥ oi.k

In the sequel, we will also rely on the notion of laxity.

Definition 2. Laxity L (or slack time) indicates the maxi-

mum delay that can be taken by the task without exceeding

its deadline: Li = Di − Ci.

2.2 Clustering

Definition 3. Clustering τi and τj , where Di ≤ Dj , pro-

duces a cluster τij with the following parameters:

2

Cij = Ci + Cj

Tij = Ti = Tj

Dij = Di

The cluster deadline is the shortest of the two tasks.

Taking the minimum deadline ensures we respect both

initial deadlines, even though the constraints will be, in

general, more stringent than the initial constraints. By

definition, we only group tasks with identical periods.

Definition 4. Let S = ({τi}1≤i≤n) be a task set and τx
and τy be two tasks of S such that Dx ≤ Dy . We say that

τxy is a valid cluster if and only if:

1. Lx ≥ Cy

2. The task set obtained after clustering is schedulable

In industrial practices, functionalities of different pe-

riods are sometimes mapped together, especially when

these functionalities interact a lot, to minimize commu-

nication as explained in [28]. This possibility makes the

clustering more complex because it requires to manage

scheduling inside a cluster. For this reason, we do not deal

with this option in this paper. Nevertheless, we could re-

lax this assumption via, e.g., hierarchical scheduling [17].

The laxity test is just an optimization. It is redundant

with the schedulability test but it is simpler to check (con-

stant time). Laxity is depicted in Subfigure 2(a).

A schedulable system might become non schedulable

after clustering, as illustrated in Figure 2. Indeed, we no-

tice in Subfigure 2(b) that the task τb misses its first dead-

line after the clustering of tasks τa and τc. Thus, we must

check the resulting task set schedulability after clustering.

3 Checking cluster schedulability

Conditions 1 of the Definition 4 can be checked trivially

in constant time. Nevertheless, condition 2 is more com-

plex. Indeed, as we intend to check schedulability of a

large number of solutions (i.e. at each step of the cluster-

ing process), considering a suitable schedulability test is

important.

A schedulability test is called sufficient if all task sets

considered schedulable by the test are actually schedula-

ble. In the same manner, a schedulability test is called

5 10 15

τa
Ca

Da Ta

5 10 15

τc
Cc

Dc Tc

5 10 15

τb
Cb

Db Tb

Cb

Ca

Cc

La

Lb

Lc

(a) Initial schedulable system of tasks τa,τb and τc under DM.

5 10 15

τac Dac Tac

5 10 15

Db Tb

Cb

Cac

Cb

Cac

τb

(b) Resulting unschedulable system after clustering of tasks τa and τc.

Figure 2: Influence of task clustering on system schedu-

lability.

necessary if all task sets considered unschedulable by the

test are in fact unschedulable. Schedulability tests that are

both sufficient and necessary are referred to as exact.

In this section, we review existing schedulability tests

that can be used for clustering under DM and EDF

scheduling policies. We only consider exact or sufficient

tests insuring that the task sets obtained after clustering

are schedulable. Indeed, applying sufficient tests means

that we might not get the minimum number of clusters but

we are sure to obtain a valid clustering. Notice that we

work with synchronous (with offsets equal to zero) task

sets that have constrained deadlines (i.e. with Di ≤ Ti).

3.1 Exact schedulability tests

Authors in [9] distinguishe two types of tests: Boolean

schedulability tests and response time tests. On the one

hand, Boolean tests give a Boolean answer, determining

only whether a task set is schedulable or not, for instance

with processor demand analysis (PDA) as the Quick con-

vergence Processor-demand Analysis (QPA) [31]. On the

other hand, exact tests based on response time analysis

(RTA) provide worst response time for each task. The

response time of a task is the time elapsed between its

release and the time when it finishes its job.

Deadline Monotonic RTA [14, 3] of a task τi is based

on the concept of level-i busy period. The level-i busy

period is the maximum continuous time interval during

3

which a processor executes tasks of higher or equal pri-

ority to the priority of the considered task τi, until τi fin-

ishes its active job. Then, the computation of the worst

response time for each task τi is based on the length of

level-i busy period. RTA for DM can be performed with

a pseudo-polynomial time algorithm.

Earliest Deadline First Contrary to fixed-task priority

(FP) systems, the worst response time is not necessar-

ily found on the first processor busy period in a task set

scheduled by EDF [30]. Thus, computing RTA for EDF

is more complex and has an exponential complexity.

3.2 Sufficient schedulability conditions

In order to reduce the complexity of the computations,

we also considered linear sufficient schedulability tests.

Audsley [4] and Devi [10] propose sufficient but not nec-

essary schedulability tests, respectively for DM and EDF

in O(n) complexity. As far as we know, there are no

more efficient tests for DM and EDF in linear complex-

ity. The first results show that the test for DM behaves

well for clustering and better than that of EDF. Those two

sufficient tests actually provide an approximate worst re-

sponse time for each task. They can be considered an

approximate RTA analysis.

4 Minimizing the number of tasks

In this section, we detail our approach for minimizing the

size of the initial task set by successive clusterings. Due

to size of the search space, we rely on a heuristic instead

of an exact algorithm.

4.1 Search space

Our problem consists in finding a partition of the task set

that is schedulable and with a minimum number of sub-

sets. A partition of a set X is a set of nonempty subsets

of X such that every element n in X is in exactly one of

these subsets. The number of partitions of a set is the Bell

number [24]. The Bell number is exponential with respect

to the size of X and can be computed by the following re-

currence relation:

Bn+1 =
n
∑

k=0

(

n
k

)

Bk with B0 = 1

As we only cluster tasks with identical periods, the

search space can be restricted to
m
∏

i=0

Bni
where Bni

is the

Bell number of set i of n tasks with equal periods and m
is the number of sets. Nevertheless, this number remains

exponential. To give a better idea of the size of the search,

notice that for instance, B500 ≃ 10844.

4.2 Partitions enumeration

A naive solution might be to conduct an exhaustive search

among all partitions of the initial task set, e.g. by apply-

ing partitions generation algorithms [2, 20]. Nonetheless,

our first experimentations show that, even using sufficient

linear tests, this solution is not achievable due to the ex-

ponential number of partitions to explore. For instance,

experiments conducted on a 2.3GHz Intel Core i7 quad-

core with 4GByte memory, from an initial set of 20 tasks,

lead to more than several days of computation. Thus, we

think that it is necessary to limit the search space by ap-

plying a heuristic.

Our technique is derived from a simple recursive

method found in Section 17.1 of [2]. For instance, for

the set {{A}, {B}, {C}} we generate the following 3

partitions in a first step:

{{A}, {B,C}}
{{A,C}, {B}}
{{A,B}, {C}}

We apply recursively this principle for each partition

generated until we obtain a partition with a unique ele-

ment. This situation corresponds to having all tasks re-

grouped in a single cluster. This enumeration produces

a tree as illustrated in Figure 3. Notice that this recur-

sive algorithm generates many duplicates. For exam-

ple, we can observe in the Figure 3 that the partition

{{A}, {B,C,D}} appears twice. However, our heuris-

tic always selects a single child by recursive call so we do

not encounter duplicates.

4

Figure 3: Recursive generation of partitions.

4.3 Heuristic

We start from an initial task set where each task is consid-

ered a cluster with one element, we gradually try to group

more and more clusters together to minimize the cardi-

nality of the task set. At each step, we try to group one

cluster with another and we have, several candidates that

fullfilled conditions 1 and 2. As some possiblities are bet-

ter than the others, we must select the best candidate. This

can be achieved by a heuristic cost (or evaluation) func-

tion that estimates which candidate will the most likely

lead to the best clustering. We propose to achieve task

clustering using classic heuristics based on cost functions.

4.3.1 Cost functions

We need a schedulability test to determine a valid task

clustering because grouping tasks makes the resulting

task set more and more difficult to schedule. Moreover,

we need a relevant heuristic cost function to determine

the best candidate for the clustering. We want a schedu-

lability test that exhibits some features that might allow

us to compare the potential of two task sets. Therefore,

in this section, we explore the compatibility of the tests

presented in Section 3 with a heuristic based on a cost

function.

Boolean exact tests only give a Boolean answer on the

schedulability of a task set. Thus, they do not exhibit

any clear feature that could be considered a heuristic cost

function.

On the one hand, exact tests based on RTA gives worst

response times for each task. On the other hand, sufficient

tests for DM and EDF presented below are based on a

pessimistic approximation of the RTA. Considering a task

τk with its worst response time denoted Rk, the closer to

1 Rk

Dk

is, the less we have margin to group the task τk with

another. Thus, we can use the sum of each task response

time divided by its respective deadline as heuristic cost

function in both cases. Then, we have a heuristic cost

function h(S), such that

h(S) =
|S|
∑

k=0

Rk

Dk

The RTA for EDF has an exponential complexity

and experiments show that the test is not practicable

(it takes more than several days of computation for 20

tasks). However, even though the RTA for FP has a

pseudo-polynomial complexity, experiments show that

run-time is not significantly slower than run-time with

sufficient test under DM when the former gives an exact

answer.

As a consequence, we can use the exact test based on

RTA for DM and the sufficient test for EDF to achieve the

best task clustering possible in a reasonable time.

4.3.2 Algorithm

Several heuristics based on a cost function exist such as

greedy best-first search (greedy BFS), A* algorithm, sim-

ulated annealing, etc. We do not aim in this paper at

comparing their different performances but at proposing

a tractable solution. We moved towards a heuristic based

on greedy BFS [25] detailed in Algorithm 1. The choice

of the heuristic (as BFS here) is not central in this work.

The main idea is the heuristic cost function that may also

be applied with other heuristics, as those cited above. In

this algorithm, we recursively enumerate partitions as ex-

plained in Section 4.2. At each recursive call, we choose

the most promising local child (partition generated as in

Section 4.2) according to a heuristic cost function as those

presented in Section 4.3.1

Lemma 1. The complexity of Algorithm 1 with lin-

ear tests is O(n4) and pseudo-polynomial with pseudo-

polynomial tests (RTA for DM).

Proof. The number of children (or direct successors) gen-

erated by the technique described in Section 4.2 from a

partition of i elements is equal to i × (i − 1)/2. We only

explore one among all visited children at each step with

our greedy heuristic. Thus, the maximum number of vis-

ited partitions is equal to
n
∑

i=0

i×(i−1)
2 . This sum corre-

5

sponds to the sum of the first n triangular numbers (also

called tetrahedral numbers) and its closed-form expres-

sion is f(n) = n(n+1)(n+2)
6 [29]. Hence, this sequence

complexity is O(n3). We apply a sufficient schedulabil-

ity test in O(n) complexity (whether with DM or EDF)

on each visited partition, so the heuristic complexity is

O(n3) × O(n) = O(n4). In a similar way, applying

schedulability tests with a pseudo-polynomial complex-

ity gives a pseudo-polynomial complexity to the whole

algorithm.

Algorithm 1 Automated task clustering algorithm

Function clustering(S)

Require: S = ({τi}1≤i≤n): initial set of tasks in ascend-

ing deadline order

minSumTests← n+ 1
minSet← null
for i = n− 1 to 0 do //find the best child

for j = i− 1 to 0 do

if Ti == Tj then

if Ci + Cj ≤ min(Di, Dj) then //laxity

S′ ← {S \ {τi, τj}} ∪ τij
if schedulable(S′) then

if h(S) < minSumTests then

minSumTests← h(S)
minSet← S′

end if

end if

end if

end if

end for

end for

if minSet 6= null then

return clustering(minSet) //continue with best child

else

return S
end if

5 Experimental results

5.1 Task set generation

We chose the following model to generate random task

sets:

• Ui: each task utilization (Ci

Ti

) is computed following

the classic UUnifast [6] method. We denote as u the

overall utilization factor of the processor.

• Ti: each task period is uniformly distributed between

a set of 10 coprime periods. We observed that in in-

dustrial real-time embedded systems, the number of

different tasks periods is usually limited (most often

less than 10).

• Ci = Ti × Ui

• Di = round((Ti − Ci) × rand(d1, d2)) + Ci with

0 ≤ d1 ≤ d2. This computation comes from [12]

and use the following functions: rand(d1, d2) which

returns a pseudo-random real number uniformly dis-

tributed in the interval [d1, d2] and round(x) which

returns the closest integer to x. We notice that

d1 = d2 = 1 corresponds to implicit deadlines and

d1 ≤ d2 = 1 to constrained deadlines.

5.2 Results

Unfortunately, as mentioned in Section 4.2, we cannot

compare our heuristic with an optimal solution because

the task clustering is not achievable with an exhaustive

search among all partitions. Instead, we study how our

heuristic behaves with various task set parameters (for ex-

ample, deadline bounds).

We have implemented the heuristic in Scala [19]. Task

sets range from 50 to 300 tasks by step of 50 tasks. Maxi-

mum utilization factor is fixed at 0.80 for DM and at 0.75

for EDF. Indeed, our tests show that there are only few

schedulable task sets (according to the tests used) gener-

ated above those values. We only take into account task

sets that are initially schedulable. We compute average re-

sults by executing several times the heuristic on randomly

generated task sets with the same parameters.

We observe in Figure 4(a) that the technique is efficient

under DM. Indeed, the number of tasks obtained after

clustering is approximately linear in the number of tasks

6

0

10

20

30

40

50

60

50 100 150 200 250 300

N
u

m
b

er
o

f
ta

sk
s

af
te

r
cl

u
st

er
in

g

Number of tasks

u=0.20

u=0.40

u=0.60

u=0.80

(a) Task clustering under DM.

0

50

100

150

200

250

300

50 100 150 200 250

N
u

m
b

er
o

f
ta

sk
s

af
te

r
cl

u
st

er
in

g

Number of tasks

u=0.20

u=0.40

u=0.60

u=0.70

u=0.75

(b) Task clustering under EDF.

Figure 4: Results of task clustering.

and the slope of the curve is rather limited. However, re-

sults under EDF test in Figure 4(b) are not as satisfying.

Clustering is less efficient, especially when the utilization

goes over 0.6. This difference probably comes from the

fact that the clustering affects more the test under EDF

than the test under DM. Finally notice that, the higher the

utilization factor is, the less the tasks are clustered.

Figure 5(a) and Figure 5(b) present the clustering de-

pending on deadline bound variations with DM. For in-

stance, [0.4 − 1.0] on the horizontal axis means that the

deadline is chosen between 40% and 100% of the period

minus the execution time. We can see in Figure 5(a) that

the number of clusters is minimal (equal to the number

of different periods) when the deadline lower bound is

about 40% of the period minus the execution time. Fig-

ure 5(b) shows that no clustering is possible before the

upper bound gets to around 60%. Above that bound, the

efficiency of the clustering improves steadily (the number

of clusters decreases).

0

10

20

30

40

50

60

[0.0-1.0] [0.2-1.0] [0.4-1.0] [0.6-1.0] [0.8-1.0] [1.0-1.0]

N
u
m

b
er

o
f

ta
sk

s
af

te
r

cl
u
st

er
in

g

Deadline bounds

nb tasks=200, u=0.60

(a) Variation of deadline lower bound.

0

10

20

30

40

50

60

[0.0-0.0] [0.0-0.2] [0.0-0.4] [0.0-0.6] [0.0-0.8] [0.0-1.0]

N
u
m

b
er

o
f

ta
sk

s
af

te
r

cl
u
st

er
in

g

Deadline bounds

nb tasks=200, u=0.60

(b) Variation of deadline upper bound.

Figure 5: Task clustering with DM: impact of deadline

bounds.

Figure 6(a) and Figure 6(b) present the clustering for

the same deadline variations with EDF. The overall trends

of the curves are similar, though the clustering is overall

less efficient.

These results show that the deadline bounds have the

most significant impact on the clustering (even more than

the number of tasks for DM). Both with DM and EDF,

the clustering is the most efficient with deadlines bounds

7

0

20

40

60

80

100

120

140

[0.0-1.0] [0.2-1.0] [0.4-1.0] [0.6-1.0] [0.8-1.0] [1.0-1.0]

N
u
m

b
er

o
f

ta
sk

s
af

te
r

cl
u
st

er
in

g

Deadline bounds

nb tasks=200, u=0.60

(a) Variation of deadline lower bound.

0

20

40

60

80

100

120

140

[0.0-0.0] [0.0-0.2] [0.0-0.4] [0.0-0.6] [0.0-0.8] [0.0-1.0]

N
u
m

b
er

o
f

ta
sk

s
af

te
r

cl
u
st

er
in

g

Deadline bounds

nb tasks=200, u=0.60

(b) Variation of deadline upper bound.

Figure 6: Task clustering with EDF: impact of deadline

bounds.

in the interval [0.5,1]. Indeed, the closer deadlines are to

the period, the more margin is left for the clustering. The

clustering is even maximal in that interval because we get

as many tasks as the number of different periods, both

for DM and EDF. Notice that according to further exper-

iments, this remains true for a higher number of distinct

periods.

6 Conclusion and future work

We proposed a heuristic to automatically reduce a large

set of independent tasks to a smaller set, while preserving

the schedulability of the task set. The current assumption

that tasks are independent will be lifted in future work.

The present work is meant to lay the foundations of auto-

mated task clustering, which, as far as we know, has not

been studied formally before.

Experimental results point out that under some ranges

of deadline bounds, the clusterings are maximal (i.e. the

number of tasks equals the number of periods). As these

ranges are actually realistic, it would be interesting to try

to formally prove that we can always reach maximal clus-

terings for these bounds. Such a property would allow to

directly gather all the tasks with the same periods without

using any clustering algorithm.

References

[1] A. Ahmadinia, C. Bobda, and J. Teich. Tempo-

ral task clustering for online placement on reconfig-

urable hardware. In Field-Programmable Technol-

ogy (FPT), 2003. Proceedings. 2003 IEEE Interna-

tional Conference on, pages 359 – 362, Dec. 2003.

[2] J. Arndt. Matters Computational: Ideas, Algo-

rithms, Source Code. Springer, 2010.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell,

and A. J. Wellings. Applying new scheduling theory

to static priority pre-emptive scheduling. Software

Engineering Journal, 8(5):284–292, 1993.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Deadline monotonic scheduling. 1990.

[5] AUTOSAR. RTE Standard Specifications.

[6] E. Bini and G. Buttazzo. Biasing effects in schedu-

lability measures. In 16th Euromicro Conference

on Real-Time Systems, 2004. ECRTS 2004. Proceed-

ings, pages 196 – 203, July 2004.

[7] F. Boniol, P.-E. Hladik, C. Pagetti, F. Aspro, and

V. Jégu. A framework for distributing real-time

functions. In Proceedings of the 6th international

conference on Formal Modeling and Analysis of

Timed Systems, FORMATS ’08, pages 155–169.

Springer-Verlag, 2008.

8

[8] A. Curic. Implementing Lustre Programs on Dis-

tributed Platforms with Real-time Constrains. PhD

thesis, University Joseph Fourier, Grenoble, 2005.

[9] R. I. Davis, A. Zabos, and A. Burns. Efficient

exact schedulability tests for fixed priority real-

time systems. Computers, IEEE Transactions on,

57(9):1261–1276, 2008.

[10] U. Devi. An improved schedulability test for unipro-

cessor periodic task systems. In Real-Time Systems,

2003. Proceedings. 15th Euromicro Conference on,

pages 23 – 30, july 2003.

[11] J. Forget. A Synchronous Language for Critical

Embedded Systems with Multiple Real-Time Con-

straints. PhD thesis, Université de Toulouse, 2009.

[12] J. Goossens and C. Macq. Limitation of the hyper-

period in real-time periodic task set generation. In In

Proceedings of the RTS Embedded System (RTS’01,

pages 133–147, 2001.

[13] L. Guodong, C. Daoxu, W. Daming, and Z. Defu.

Task clustering and scheduling to multiprocessors

with duplication. In Parallel and Distributed Pro-

cessing Symposium, 2003. Proceedings. Interna-

tional, page 8 pp., Apr. 2003.

[14] M. Joseph and P. Pandya. Finding response times

in a real-time system. The Computer Journal,

29(5):390–395, 1986.

[15] E. Lee. The problem with threads. Computer,

39(5):33–42, 2006.

[16] J. Y.-T. Leung and J. Whitehead. On the complex-

ity of fixed-priority scheduling of periodic, real-time

tasks. Performance evaluation, 2(4):237–250, 1982.

[17] G. Lipari and E. Bini. A methodology for designing

hierarchical scheduling systems. Journal of Embed-

ded Computing, 1(2):257–269, 2005.

[18] C. L. Liu and J. W. Layland. Scheduling algorithms

for multiprogramming in a hard-real-time environ-

ment. Journal of the ACM, 20(1):46–61, January

1973.

[19] M. Odersky, L. Spoon, and B. Venners. Program-

ming in Scala, 2/e. Artima Series. Artima Press,

2010.

[20] M. Orlov. Efficient generation of set partitions.

Engineering and Computer Sciences, University of

Ulm, Tech. Rep, 2002.

[21] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and

D. Lesens. Multi-task implementation of multi-

periodic synchronous programs. Discrete Event Dy-

namic Systems, 21(3):307–338, 2011.

[22] M. Palis, J.-C. Liou, and D. Wei. Task clustering

and scheduling for distributed memory parallel ar-

chitectures. Parallel and Distributed Systems, IEEE

Transactions on, 7(1):46 –55, Jan. 1996.

[23] K. Ramamritham. Allocation and scheduling of

precedence-related periodic tasks. IEEE Trans. Par-

allel Distrib. Syst., 6(4):412–420, Apr. 1995.

[24] G.-C. Rota. The number of partitions of a set. The

American Mathematical Monthly, 71(5):498–504,

1964.

[25] S. J. Russell and P. Norvig. Artificial Intelligence:

A Modern Approach, pages 94–95. Prentice Hall, 2

edition, 2003.

[26] L. Santinelli, W. Puffitsch, C. Pagetti, and F. Bo-

niol. Scheduling with functional and non-functional

requirements: the sub-functional approach. Work-

in-Progress Session of ECRTS 2013, 2:9, 2013.

[27] O. Scheickl and M. Rudorfer. Automotive real time

development using a timing-augmented AUTOSAR

specification. Proceedings of ERTS2008, 4, 2008.

[28] S. Schliecker, J. Rox, M. Negrean, K. Richter,

M. Jersak, and R. Ernst. System level perfor-

mance analysis for real-time automotive multicore

and network architectures. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, 28(7):979 –992, July 2009.

[29] N. J. A. Sloane. The On-Line Encyclopedia of Inte-

ger Sequences. A000292.

9

http://oeis.org/A000292

[30] M. Spuri. Analysis of Deadline Scheduled Real-

Time Systems. Research report RR-2772, INRIA,

1996. REFLECS Project.

[31] F. Zhang and A. Burns. Schedulability analysis for

real-time systems with edf scheduling. Computers,

IEEE Transactions on, 58(9):1250–1258, 2009.

[32] M. Zhang and Z. Gu. Optimization issues in map-

ping AUTOSAR components to distributed multi-

threaded implementations. In 2011 22nd IEEE In-

ternational Symposium on Rapid System Prototyp-

ing (RSP), pages 23 –29, May 2011.

10

	Introduction
	Problem definition
	Scheduling
	Clustering

	Checking cluster schedulability
	Exact schedulability tests
	Sufficient schedulability conditions

	Minimizing the number of tasks
	Search space
	Partitions enumeration
	Heuristic
	Cost functions
	Algorithm

	Experimental results
	Task set generation
	Results

	Conclusion and future work

