37,475 research outputs found

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Image processing methods and architectures in diagnostic pathology.

    Get PDF
    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory

    Using Provenance to support Good Laboratory Practice in Grid Environments

    Get PDF
    Conducting experiments and documenting results is daily business of scientists. Good and traceable documentation enables other scientists to confirm procedures and results for increased credibility. Documentation and scientific conduct are regulated and termed as "good laboratory practice." Laboratory notebooks are used to record each step in conducting an experiment and processing data. Originally, these notebooks were paper based. Due to computerised research systems, acquired data became more elaborate, thus increasing the need for electronic notebooks with data storage, computational features and reliable electronic documentation. As a new approach to this, a scientific data management system (DataFinder) is enhanced with features for traceable documentation. Provenance recording is used to meet requirements of traceability, and this information can later be queried for further analysis. DataFinder has further important features for scientific documentation: It employs a heterogeneous and distributed data storage concept. This enables access to different types of data storage systems (e. g. Grid data infrastructure, file servers). In this chapter we describe a number of building blocks that are available or close to finished development. These components are intended for assembling an electronic laboratory notebook for use in Grid environments, while retaining maximal flexibility on usage scenarios as well as maximal compatibility overlap towards each other. Through the usage of such a system, provenance can successfully be used to trace the scientific workflow of preparation, execution, evaluation, interpretation and archiving of research data. The reliability of research results increases and the research process remains transparent to remote research partners.Comment: Book Chapter for "Data Provenance and Data Management for eScience," of Studies in Computational Intelligence series, Springer. 25 pages, 8 figure

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape

    Job Interactivity Using a Steering Service in an Interactive Grid Analysis Environment

    Get PDF
    Grid computing has been dominated by the execution of batch jobs. Interactive data analysis is a new domain in the area of grid job execution. The Grid-Enabled Analysis Environment (GAE) attempts to address this in HEP grids by the use of a Steering Service. This service will provide physicists with the continuous feedback of their jobs and will provide them with the ability to control and steer the execution of their submitted jobs. It will enable them to move their jobs to different grid nodes when desired. The Steering Service will also act autonomously to make steering decisions on behalf of the user, attempting to optimize the execution of the job. This service will also ensure the optimal consumption of the Grid user's resource quota. The Steering Service will provide a web service interface defined by standard WSDL. In this paper we have discussed how the Steering Service will facilitate interactive remote analysis of data generated in Interactive Grid Analysis Environment

    BioNessie - a grid enabled biochemical networks simulation environment

    Get PDF
    The simulation of biochemical networks provides insight and understanding about the underlying biochemical processes and pathways used by cells and organisms. BioNessie is a biochemical network simulator which has been developed at the University of Glasgow. This paper describes the simulator and focuses in particular on how it has been extended to benefit from a wide variety of high performance compute resources across the UK through Grid technologies to support larger scale simulations
    corecore