3 research outputs found

    Towards High-Frequency Tracking and Fast Edge-Aware Optimization

    Full text link
    This dissertation advances the state of the art for AR/VR tracking systems by increasing the tracking frequency by orders of magnitude and proposes an efficient algorithm for the problem of edge-aware optimization. AR/VR is a natural way of interacting with computers, where the physical and digital worlds coexist. We are on the cusp of a radical change in how humans perform and interact with computing. Humans are sensitive to small misalignments between the real and the virtual world, and tracking at kilo-Hertz frequencies becomes essential. Current vision-based systems fall short, as their tracking frequency is implicitly limited by the frame-rate of the camera. This thesis presents a prototype system which can track at orders of magnitude higher than the state-of-the-art methods using multiple commodity cameras. The proposed system exploits characteristics of the camera traditionally considered as flaws, namely rolling shutter and radial distortion. The experimental evaluation shows the effectiveness of the method for various degrees of motion. Furthermore, edge-aware optimization is an indispensable tool in the computer vision arsenal for accurate filtering of depth-data and image-based rendering, which is increasingly being used for content creation and geometry processing for AR/VR. As applications increasingly demand higher resolution and speed, there exists a need to develop methods that scale accordingly. This dissertation proposes such an edge-aware optimization framework which is efficient, accurate, and algorithmically scales well, all of which are much desirable traits not found jointly in the state of the art. The experiments show the effectiveness of the framework in a multitude of computer vision tasks such as computational photography and stereo.Comment: PhD thesi

    Edge adaptive filtering of depth maps for mobile devices

    Get PDF
    Abstract. Mobile phone cameras have an almost unlimited depth of field, and therefore the images captured with them have wide areas in focus. When the depth of field is digitally manipulated through image processing, accurate perception of depth in a captured scene is important. Capturing depth data requires advanced imaging methods. In case a stereo lens system is used, depth information is calculated from the disparities between stereo frames. The resulting depth map is often noisy or doesn’t have information for every pixel. Therefore it has to be filtered before it is used for emphasizing depth. Edges must be taken into account in this process to create natural-looking shallow depth of field images. In this study five filtering methods are compared with each other. The main focus is the Fast Bilateral Solver, because of its novelty and high reported quality. Mobile imaging requires fast filtering in uncontrolled environments, so optimizing the processing time of the filters is essential. In the evaluations the depth maps are filtered, and the quality and the speed is determined for every method. The results show that the Fast Bilateral Solver filters the depth maps well, and can handle noisy depth maps better than the other evaluated methods. However, in mobile imaging it is slow and needs further optimization.Reunatietoinen syvyyskarttojen suodatus mobiililaitteilla. Tiivistelmä. Matkapuhelimien kameroissa on lähes rajoittamaton syväterävyysalue, ja siksi niillä otetuissa kuvissa laajat alueet näkyvät tarkennettuina. Digitaalisessa syvyysterävyysalueen muokkauksessa tarvitaan luotettava syvyystieto. Syvyysdatan hankinta vaatii edistyneitä kuvausmenetelmiä. Käytettäessä stereokameroita syvyystieto lasketaan kuvien välisistä dispariteeteista. Tuloksena syntyvä syvyyskartta on usein kohinainen, tai se ei sisällä syvyystietoa joka pikselille. Tästä syystä se on suodatettava ennen käyttöä syvyyden korostamiseen. Tässä prosessissa reunat ovat otettava huomioon, jotta saadaan luotua luonnollisen näköisiä kapean syväterävyysalueen kuvia. Tässä tutkimuksessa verrataan viittä suodatusmenetelmää keskenään. Eniten keskitytään nopeaan bilateraaliseen ratkaisijaan, johtuen sen uutuudesta ja korkeasta tuloksen laadusta. Mobiililaitteella kuvantamisen vaatimuksena on nopea suodatus hallitsemattomissa olosuhteissa, joten suodattimien prosessointiajan optimointi on erittäin tärkeää. Vertailuissa syvyyskuvat suodatetaan ja suodatuksen laatu ja nopeus mitataan jokaiselle menetelmälle. Tulokset osoittavat, että nopea bilateraalinen ratkaisija suodattaa syvyyskarttoja hyvin ja osaa käsitellä kohinaisia syvyyskarttoja paremmin kuin muut tarkastellut menetelmät. Mobiilikuvantamiseen se on kuitenkin hidas ja tarvitsee pidemmälle menevää optimointia
    corecore