2 research outputs found

    Adaptive fuzzy control for a marine vessel with time-varying constraints

    Get PDF
    An adaptive fuzzy neural network (FNN) control scheme is proposed for a marine vessel with time-varying constraints, guaranteed transient response and unknown dynamics. A series of continuous constraint functions are introduced to shape the motion of a marine vessel. To deal with the constraint problems and transient response problems, an asymmetric time-varying barrier Lyapunov function is designed to ensure that the system states are upper bounded by the considered constraint functions. FNNs are constructed to identify the unknown dynamics. Considering existing approximation errors when FNNs approximating the unknown dynamics, an adaptive term is designed to compensate the approximation errors in order to obtain accurate control. Via Lyapunov stability theory, it has been proved that all the states in the closed-loop system are uniformly bounded ultimately without violating the corresponding prescribed constraint region. Two comparative simulations are carried out to verify the effectiveness of the proposed control

    An Improved particle swarm optimization based on lévy flight and simulated annealing for high dimensional optimization problem

    Get PDF
    Particle swarm optimization (PSO) is a simple metaheuristic method to implement with robust performance. PSO is regarded as one of the numerous researchers' most well-studied algorithms. However, two of its most fundamental problems remain unresolved. PSO converges onto the local optimum for high-dimensional optimization problems, and it has slow convergence speeds. This paper introduces a new variant of a particle swarm optimization algorithm utilizing Lévy flight-McCulloch, and fast simulated annealing (PSOLFS). The proposed algorithm uses two strategies to address high-dimensional problems: hybrid PSO to define the global search area and fast simulated annealing to refine the visited search region. In this paper, PSOLFS is designed based on a balance between exploration and exploitation. We evaluated the algorithm on 16 benchmark functions for 500 and 1,000 dimension experiments. On 500 dimensions, the algorithm obtains the optimal value on 14 out of 16 functions. On 1,000 dimensions, the algorithm obtains the optimal value on eight benchmark functions and is close to optimal on four others. We also compared PSOLFS with another five PSO variants regarding convergence accuracy and speed. The results demonstrated higher accuracy and faster convergence speed than other PSO variants. Moreover, the results of the Wilcoxon test show a significant difference between PSOLFS and the other PSO variants. Our experiments' findings show that the proposed method enhances the standard PSO by avoiding the local optimum and improving the convergence speed
    corecore