6,040 research outputs found

    Optimal surface cutting

    Get PDF
    Surface cutting problems in two dimensions are considered for nonrectangular items. An exact solution method is discussed. Outlines of several possible heuristic algorithms are also presented. For the heuristic methods a first approximation to the optimal solution is obtained by encompassing each item by a rectangle and then using some available strategy for this standard problem. Different approaches are then suggested for more accurate methods

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Solving Irregular Strip Packing Problems With Free Rotations Using Separation Lines

    Full text link
    Solving nesting problems or irregular strip packing problems is to position polygons in a fixed width and unlimited length strip, obeying polygon integrity containment constraints and non-overlapping constraints, in order to minimize the used length of the strip. To ensure non-overlapping, we used separation lines. A straight line is a separation line if given two polygons, all vertices of one of the polygons are on one side of the line or on the line, and all vertices of the other polygon are on the other side of the line or on the line. Since we are considering free rotations of the polygons and separation lines, the mathematical model of the studied problem is nonlinear. Therefore, we use the nonlinear programming solver IPOPT (an algorithm of interior points type), which is part of COIN-OR. Computational tests were run using established benchmark instances and the results were compared with the ones obtained with other methodologies in the literature that use free rotation

    Phase field approach to optimal packing problems and related Cheeger clusters

    Full text link
    In a fixed domain of RN\Bbb{R}^N we study the asymptotic behaviour of optimal clusters associated to α\alpha-Cheeger constants and natural energies like the sum or maximum: we prove that, as the parameter α\alpha converges to the "critical" value (N−1N)+\Big (\frac{N-1}{N}\Big ) _+, optimal Cheeger clusters converge to solutions of different packing problems for balls, depending on the energy under consideration. As well, we propose an efficient phase field approach based on a multiphase Gamma convergence result of Modica-Mortola type, in order to compute α\alpha-Cheeger constants, optimal clusters and, as a consequence of the asymptotic result, optimal packings. Numerical experiments are carried over in two and three space dimensions
    • …
    corecore