7 research outputs found

    Spatial and Topological Analysis of Urban Land Cover Structure in New Orleans Using Multispectral Aerial Image and Lidar Data

    Get PDF
    Urban land use and land cover (LULC) mapping has been one of the major applications in remote sensing of the urban environment. Land cover refers to the biophysical materials at the surface of the earth (i.e. grass, trees, soils, concrete, water), while land use indicates the socio-economic function of the land (i.e., residential, industrial, commercial land uses). This study addresses the technical issue of how to computationally infer urban land use types based on the urban land cover structures from remote sensing data. In this research, a multispectral aerial image and high-resolution LiDAR topographic data have been integrated to investigate the urban land cover and land use in New Orleans, Louisiana. First, the LiDAR data are used to solve the problems associated with solar shadows of trees and buildings, building lean and occlusions in the multispectral aerial image. A two-stage rule-based classification approach has been developed, and the urban land cover of New Orleans has been classified into six categories: water, grass, trees, imperious ground, elevated bridges, and buildings with an overall classification accuracy of 94.2%, significantly higher than that of traditional per-pixel based classification method. The buildings are further classified into regular low-rising, multi-story, mid-rise, high-rise, and skyscrapers in terms of the height. Second, the land cover composition and structure in New Orleans have been quantitatively analyzed for the first time in terms of urban planning districts, and the information and knowledge about the characteristics of urban land cover components and structure for different types of land use functions have been discovered. Third, a graph-theoretic data model, known as relational attribute neighborhood graph (RANG), is adopted to comprehensively represent geometrical and thematic attributes, compositional and structural properties, spatial/topological relations between urban land cover patches (objects). Based on the evaluation of the importance of 26 spatial, thematic and topological variables in RANG, the random forest classification method is utilized to computationally infer and classify the urban land use in New Orleans into 7 types at the urban block level: single-family residential, two-family residential, multi-family residential, commercial, CBD, institutional, parks and open space, with an overall accuracy of 91.7%

    A graph-based algorithm to define urban topology from unstructured geospatial data

    No full text
    Interpretation and analysis of urban topology are particularly challenging tasks given the complex spatial pattern of the urban elements, and hence their automation is especially needed. In terms of the urban scene meaning, the starting point in this study is unstructured geospatial data, i.e. no prior knowledge of the geospatial entities is assumed. Translating these data into more meaningful homogeneous regions can be achieved by detecting geographic features within the initial random collection of geospatial objects, and then by grouping them according to their spatial arrangement. The techniques applied to achieve this are those of graph theory applied to urban topology analysis within GIS environment. This article focuses primarily on the implementation and algorithmic design of a methodology to define and make urban topology explicit. Conceptually, such procedure analyses and interprets geospatial object arrangements in terms of the extension of the standard notion of the topological relation of adjacency to that of containment: the so-called ‘containment-first search’. LiDAR data were used as an example scenario for development and test purposes

    A graph-based algorithm to define urban topology from unstructured geospatial data

    No full text
    Interpretation and analysis of urban topology are particularly challenging tasks given the complex spatial pattern of the urban elements, and hence their automation is especially needed. In terms of the urban scene meaning, the starting point in this study is unstructured geospatial data, i.e. no prior knowledge of the geospatial entities is assumed. Translating these data into more meaningful homogeneous regions can be achieved by detecting geographic features within the initial random collection of geospatial objects, and then by grouping them according to their spatial arrangement. The techniques applied to achieve this are those of graph theory applied to urban topology analysis within GIS environment. This article focuses primarily on the implementation and algorithmic design of a methodology to define and make urban topology explicit. Conceptually, such procedure analyses and interprets geospatial object arrangements in terms of the extension of the standard notion of the topological relation of adjacency to that of containment: the so-called ‘containment-first search’. LiDAR data were used as an example scenario for development and test purposes

    Integrated topological representation of multi-scale utility resource networks

    Get PDF
    PhD ThesisThe growth of urban areas and their resource consumption presents a significant global challenge. Existing utility resource supply systems are unresponsive, unreliable and costly. There is a need to improve the configuration and management of the infrastructure networks that carry these resources from source to consumer and this is best performed through analysis of multi-scale, integrated digital representations. However, the real-world networks are represented across different datasets that are underpinned by different data standards, practices and assumptions, and are thus challenging to integrate. Existing integration methods focus predominantly on achieving maximum information retention through complex schema mappings and the development of new data standards, and there is strong emphasis on reconciling differences in geometries. However, network topology is of greatest importance for the analysis of utility networks and simulation of utility resource flows because it is a representation of functional connectivity, and the derivation of this topology does not require the preservation of full information detail. The most pressing challenge is asserting the connectivity between the datasets that each represent subnetworks of the entire end-to-end network system. This project presents an approach to integration that makes use of abstracted digital representations of electricity and water networks to infer inter-dataset network connectivity, exploring what can be achieved by exploiting commonalities between existing datasets and data standards to overcome their otherwise inhibiting disparities. The developed methods rely on the use of graph representations, heuristics and spatial inference, and the results are assessed using surveying techniques and statistical analysis of uncertainties. An algorithm developed for water networks was able to correctly infer a building connection that was absent from source datasets. The thesis concludes that several of the key use cases for integrated topological representation of utility networks are partially satisfied through the methods presented, but that some differences in data standardisation and best practice in the GIS and BIM domains prevent full automation. The common and unique identification of real-world objects, agreement on a shared concept vocabulary for the built environment, more accurate positioning of distribution assets, consistent use of (and improved best practice for) georeferencing of BIM models and a standardised numerical expression of data uncertainties are identified as points of development.Engineering and Physical Sciences Research Council Ordnance Surve

    LIDAR based semi-automatic pattern recognition within an archaeological landscape

    Get PDF
    LIDAR-Daten bieten einen neuartigen Ansatz zur Lokalisierung und Überwachung des kulturellen Erbes in der Landschaft, insbesondere in schwierig zu erreichenden Gebieten, wie im Wald, im unwegsamen GelĂ€nde oder in sehr abgelegenen Gebieten. Die manuelle Lokalisation und Kartierung von archĂ€ologischen Informationen einer Kulturlandschaft ist in der herkömmlichen Herangehensweise eine sehr zeitaufwĂ€ndige Aufgabe des Fundstellenmanagements (Cultural Heritage Management). Um die Möglichkeiten in der Erkennung und bei der Verwaltung des kulturellem Erbes zu verbessern und zu ergĂ€nzen, können computergestĂŒtzte Verfahren einige neue LösungsansĂ€tze bieten, die darĂŒber hinaus sogar die Identifizierung von fĂŒr das menschliche Auge bei visueller Sichtung nicht erkennbaren Details ermöglichen. Aus archĂ€ologischer Sicht ist die vorliegende Dissertation dadurch motiviert, dass sie LIDAR-GelĂ€ndemodelle mit archĂ€ologischen Befunden durch automatisierte und semiautomatisierte Methoden zur Identifizierung weiterer archĂ€ologischer Muster zu Bodendenkmalen als digitale „LIDAR-Landschaft“ bewertet. Dabei wird auf möglichst einfache und freie verfĂŒgbare algorithmische AnsĂ€tze (Open Source) aus der Bildmustererkennung und Computer Vision zur Segmentierung und Klassifizierung der LIDAR-Landschaften zur großflĂ€chigen Erkennung archĂ€ologischer DenkmĂ€ler zurĂŒckgegriffen. Die Dissertation gibt dabei einen umfassenden Überblick ĂŒber die archĂ€ologische Nutzung und das Potential von LIDAR-Daten und definiert anhand qualitativer und quantitativer AnsĂ€tze den Entwicklungsstand der semiautomatisierten Erkennung archĂ€ologischer Strukturen im Rahmen archĂ€ologischer Prospektion und Fernerkundungen. DarĂŒber hinaus erlĂ€utert sie Best Practice-Beispiele und den einhergehenden aktuellen Forschungsstand. Und sie veranschaulicht die QualitĂ€t der Erkennung von BodendenkmĂ€lern durch die semiautomatisierte Segmentierung und Klassifizierung visualisierter LIDAR-Daten. Letztlich identifiziert sie das Feld fĂŒr weitere Anwendungen, wobei durch eigene, algorithmische Template Matching-Verfahren großflĂ€chige Untersuchungen zum kulturellen Erbe ermöglicht werden. ResĂŒmierend vergleicht sie die analoge und computergestĂŒtzte Bildmustererkennung zu Bodendenkmalen, und diskutiert abschließend das weitere Potential LIDAR-basierter Mustererkennung in archĂ€ologischen Kulturlandschaften
    corecore