40,490 research outputs found

    The Watershed Transformation Applied to Image Segmentation

    Get PDF
    Image segmentation by mathematical morphology is a methodology based upon the notions of watershed and homotopy modification.This paper aims at introducing this methodology through various examples of segmentation in materials sciences, electron microscopy and scene analysis. First, we defined our basic tool, the watershed transform. We showed that this transformation can be built by implementing a flooding process on a greytone image. This flooding process can be performed by using elementary morphological operations such as geodesic skeleton and reconstruction. Other algorithms are also briefly presented (arrows representation). Then, the use of this transformation for image segmentation purposes is discussed. The application of the watershed transform to gradient images and the problems raised by over-segmentation are emphasized. This leads, into the third part, to the introduction of a general methodology for segmentation, based on the definition of markers and on a transformation called homotopy modification. This complex tool is defined in detail and various types of implementations are given. Many examples of segmentation are presented. These examples are taken from various fields: transmission electron microscopy, scanning electron microscopy (SEM), 3D holographic pictures, radiography, non destructive control and so on. The final part of this paper is devoted to the use of the watershed transformation for hierarchical segmentation. This tool is particularly efficient for defining different levels of segmentation starting from a graph representation of the images based on the mosaic image transform. This approach will be explained by means of examples in industrial vision and scene analysis

    Point-wise mutual information-based video segmentation with high temporal consistency

    Full text link
    In this paper, we tackle the problem of temporally consistent boundary detection and hierarchical segmentation in videos. While finding the best high-level reasoning of region assignments in videos is the focus of much recent research, temporal consistency in boundary detection has so far only rarely been tackled. We argue that temporally consistent boundaries are a key component to temporally consistent region assignment. The proposed method is based on the point-wise mutual information (PMI) of spatio-temporal voxels. Temporal consistency is established by an evaluation of PMI-based point affinities in the spectral domain over space and time. Thus, the proposed method is independent of any optical flow computation or previously learned motion models. The proposed low-level video segmentation method outperforms the learning-based state of the art in terms of standard region metrics

    Planar Ultrametric Rounding for Image Segmentation

    Full text link
    We study the problem of hierarchical clustering on planar graphs. We formulate this in terms of an LP relaxation of ultrametric rounding. To solve this LP efficiently we introduce a dual cutting plane scheme that uses minimum cost perfect matching as a subroutine in order to efficiently explore the space of planar partitions. We apply our algorithm to the problem of hierarchical image segmentation

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page
    • …
    corecore