2,508 research outputs found

    The "MIND" Scalable PIM Architecture

    Get PDF
    MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer architecture for high performance computing and scalable embedded processing. It is a Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on each chip and supports global shared memory across systems of MIND components. MIND is distinguished from other PIM architectures in that it incorporates mechanisms for efficient support of a global parallel execution model based on the semantics of message-driven multithreaded split-transaction processing. MIND is designed to operate either in conjunction with other conventional microprocessors or in standalone arrays of like devices. It also incorporates mechanisms for fault tolerance, real time execution, and active power management. This paper describes the major elements and operational methods of the MIND architecture

    The AXIOM software layers

    Get PDF
    AXIOM project aims at developing a heterogeneous computing board (SMP-FPGA).The Software Layers developed at the AXIOM project are explained.OmpSs provides an easy way to execute heterogeneous codes in multiple cores. People and objects will soon share the same digital network for information exchange in a world named as the age of the cyber-physical systems. The general expectation is that people and systems will interact in real-time. This poses pressure onto systems design to support increasing demands on computational power, while keeping a low power envelop. Additionally, modular scaling and easy programmability are also important to ensure these systems to become widespread. The whole set of expectations impose scientific and technological challenges that need to be properly addressed.The AXIOM project (Agile, eXtensible, fast I/O Module) will research new hardware/software architectures for cyber-physical systems to meet such expectations. The technical approach aims at solving fundamental problems to enable easy programmability of heterogeneous multi-core multi-board systems. AXIOM proposes the use of the task-based OmpSs programming model, leveraging low-level communication interfaces provided by the hardware. Modular scalability will be possible thanks to a fast interconnect embedded into each module. To this aim, an innovative ARM and FPGA-based board will be designed, with enhanced capabilities for interfacing with the physical world. Its effectiveness will be demonstrated with key scenarios such as Smart Video-Surveillance and Smart Living/Home (domotics).Peer ReviewedPostprint (author's final draft

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Exploring the design space for 3D clustered architectures

    Get PDF
    Journal Article3D die-stacked chips are emerging as intriguing prospects for the future because of their ability to reduce on-chip wire delays and power consumption. However, they will likely cause an increase in chip operating temperature, which is already a major bottleneck in modern microprocessor design. We believe that 3D will provide the highest performance benefit for high-ILP cores, where wire delays for 2D designs can be substantial. A clustered microarchitecture is an example of a complexity-effective implementation of a high-ILP core. In this paper, we consider 3D organizations of a single-threaded clustered microarchitecture to understand how floorplanning impacts performance and temperature. We first show that delays between the data cache and ALUs are most critical to performance. We then present a novel 3D layout that provides the best balance between temperature and performance. The best-performing 3D layout has 12% higher performance than the best-performing 2D layout

    The AXIOM platform for next-generation cyber physical systems

    Get PDF
    Cyber-Physical Systems (CPSs) are widely used in many applications that require interactions between humans and their physical environment. These systems usually integrate a set of hardware-software components for optimal application execution in terms of performance and energy consumption. The AXIOM project (Agile, eXtensible, fast I/O Module), presented in this paper, proposes a hardware-software platform for CPS coupled with an easy parallel programming model and sufficient connectivity so that the performance can scale-up by adding multiple boards. AXIOM supports a task-based programming model based on OmpSs and leverages a high-speed, inexpensive communication interface called AXIOM-Link. The board also tightly couples the CPU with reconfigurable resources to accelerate portions of the applications. As case studies, AXIOM uses smart video surveillance, and smart home living applicationsThis work is partially supported by the European Union H2020 program through the AXIOM project (grant ICT-01-2014 GA 645496) and HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). We also thank the Xilinx University Program for its hardware and software donations.Peer ReviewedPostprint (author's final draft

    Dynamic Voltage and Frequency Scaling for Wireless Network-on-Chip

    Get PDF
    Previously, research and design of Network-on-Chip (NoC) paradigms where mainly focused on improving the performance of the interconnection networks. With emerging wide range of low-power applications and energy constrained high-performance applications, it is highly desirable to have NoCs that are highly energy efficient without incurring performance penalty. In the design of high-performance massive multi-core chips, power and heat have become dominant constrains. Increased power consumption can raise chip temperature, which in turn can decrease chip reliability and performance and increase cooling costs. It was proven that Small-world Wireless Network-on-Chip (SWNoC) architecture which replaces multi-hop wire-line path in a NoC by high-bandwidth single hop long range wireless links, reduces the overall energy dissipation when compared to wire-line mesh-based NoC architecture. However, the overall energy dissipation of the wireless NoC is still dominated by wire-line links and switches (buffers). Dynamic Voltage Scaling is an efficient technique for significant power savings in microprocessors. It has been proposed and deployed in modern microprocessors by exploiting the variance in processor utilization. On a Network-on-Chip paradigm, it is more likely that the wire-line links and buffers are not always fully utilized even for different applications. Hence, by exploiting these characteristics of the links and buffers over different traffic, DVFS technique can be incorporated on these switches and wire-line links for huge power savings. In this thesis, a history based DVFS mechanism is proposed. This mechanism uses the past utilization of the wire-line links & buffers to predict the future traffic and accordingly tune the voltage and frequency for the links and buffers dynamically for each time window. This mechanism dynamically minimizes the power consumption while substantially maintaining a high performance over the system. Performance analysis on these DVFS enabled Wireless NoC shows that, the overall energy dissipation is improved by around 40% when compared Small-world Wireless NoCs
    corecore