111 research outputs found

    Five Facets of 6G: Research Challenges and Opportunities

    Full text link
    Whilst the fifth-generation (5G) systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage we survey five main research facets of this field, namely {\em Facet~1: next-generation architectures, spectrum and services, Facet~2: next-generation networking, Facet~3: Internet of Things (IoT), Facet~4: wireless positioning and sensing, as well as Facet~5: applications of deep learning in 6G networks.} In this paper, we have provided a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, applications as well as designs. We have portrayed a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we have listed a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm-shift that has taken place from pure single-component bandwidth-efficiency, power-efficiency or delay-optimization towards multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the 5G system. We advocate a further evolutionary step towards multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optiomal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    On SFBC schemes for enabling virtual array concept in monostatic ISAC scenarios

    Get PDF
    The integrated sensing and communication (ISAC) paradigm is being proposed for 6G as a new feature of the physical layer (PHY), for tackling dual-functional applications, i.e., demanding radio-sensing and communication functions, such as the Internet of Things (IoT) and autonomous driving systems. This work considers the integration of sensing and communications functionalities in a unique platform. To achieve this goal, the use of orthogonal space frequency block codes (SFBC) is proposed. SFBC code orthogonality enables both the separation of communications data streams at a user terminal and the estimation of target parameters. The SFBC enhances the communications link diversity without requiring channel state information knowledge at the transmitter and enable the virtual antenna array concept for enhancing the direction-finding resolution. The use of different SFBCs provides a tradeoff between achieved diversity and sensing resolution. For example, an Alamouti code, applicable for the case with two transmitting antennas, duplicates sensing resolution and achieves a diversity order of two while the use of a Tarokh code, applicable for a scenario with four transmitting antennas, provides a fourfold better resolution and diversity order of four. However, the code rate achieved with the Tarokh code is half of the one achieved with the Alamouti code. Furthermore, the unambiguous range is reduced since the bandwidth is divided to multiplex the different antenna signals. For its simplicity, good performance and reduced integration requirements, the method is promising for future ISAC systems.publishe

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)
    corecore