1,480 research outputs found

    A Numerical Slow Manifold Approach to Model Reduction for Optimal Control of Multiple Time Scale ODE

    Full text link
    Time scale separation is a natural property of many control systems that can be ex- ploited, theoretically and numerically. We present a numerical scheme to solve optimal control problems with considerable time scale separation that is based on a model reduction approach that does not need the system to be explicitly stated in singularly perturbed form. We present examples that highlight the advantages and disadvantages of the method

    Slow invariant manifold of heartbeat model

    Full text link
    A new approach called Flow Curvature Method has been recently developed in a book entitled Differential Geometry Applied to Dynamical Systems. It consists in considering the trajectory curve, integral of any n-dimensional dynamical system as a curve in Euclidean n-space that enables to analytically compute the curvature of the trajectory - or the flow. Hence, it has been stated on the one hand that the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold and on the other hand that such a manifold associated with any n-dimensional dynamical system directly provides its slow manifold analytical equation the invariance of which has been proved according to Darboux theory. The Flow Curvature Method has been already applied to many types of autonomous dynamical systems either singularly perturbed such as Van der Pol Model, FitzHugh-Nagumo Model, Chua's Model, ...) or non-singularly perturbed such as Pikovskii-Rabinovich-Trakhtengerts Model, Rikitake Model, Lorenz Model,... More- over, it has been also applied to non-autonomous dynamical systems such as the Forced Van der Pol Model. In this article it will be used for the first time to analytically compute the slow invariant manifold analytical equation of the four-dimensional Unforced and Forced Heartbeat Model. Its slow invariant manifold equation which can be considered as a "state equation" linking all variables could then be used in heart prediction and control according to the strong correspondence between the model and the physiological cardiovascular system behavior.Comment: arXiv admin note: substantial text overlap with arXiv:1408.171

    Canards from Chua's circuit

    Get PDF
    The aim of this work is to extend Beno\^it's theorem for the generic existence of "canards" solutions in singularly perturbed dynamical systems of dimension three with one fast variable to those of dimension four. Then, it is established that this result can be found according to the Flow Curvature Method. Applications to Chua's cubic model of dimension three and four enable to state the existence of "canards" solutions in such systems.Comment: arXiv admin note: text overlap with arXiv:1408.489

    Slow invariant manifolds as curvature of the flow of dynamical systems

    Full text link
    Considering trajectory curves, integral of n-dimensional dynamical systems, within the framework of Differential Geometry as curves in Euclidean n-space, it will be established in this article that the curvature of the flow, i.e. the curvature of the trajectory curves of any n-dimensional dynamical system directly provides its slow manifold analytical equation the invariance of which will be then proved according to Darboux theory. Thus, it will be stated that the flow curvature method, which uses neither eigenvectors nor asymptotic expansions but only involves time derivatives of the velocity vector field, constitutes a general method simplifying and improving the slow invariant manifold analytical equation determination of high-dimensional dynamical systems. Moreover, it will be shown that this method generalizes the Tangent Linear System Approximation and encompasses the so-called Geometric Singular Perturbation Theory. Then, slow invariant manifolds analytical equation of paradigmatic Chua's piecewise linear and cubic models of dimensions three, four and five will be provided as tutorial examples exemplifying this method as well as those of high-dimensional dynamical systems

    Singularly Perturbed Monotone Systems and an Application to Double Phosphorylation Cycles

    Full text link
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation ``futile cycle'' motif which plays a central role in eukaryotic cell signaling.Comment: 21 pages, 3 figures, corrected typos, references remove

    Formation of Multiple Groups of Mobile Robots Using Sliding Mode Control

    Full text link
    Formation control of multiple groups of agents finds application in large area navigation by generating different geometric patterns and shapes, and also in carrying large objects. In this paper, Centroid Based Transformation (CBT) \cite{c39}, has been applied to decompose the combined dynamics of wheeled mobile robots (WMRs) into three subsystems: intra and inter group shape dynamics, and the dynamics of the centroid. Separate controllers have been designed for each subsystem. The gains of the controllers are such chosen that the overall system becomes singularly perturbed system. Then sliding mode controllers are designed on the singularly perturbed system to drive the subsystems on sliding surfaces in finite time. Negative gradient of a potential based function has been added to the sliding surface to ensure collision avoidance among the robots in finite time. The efficacy of the proposed controller is established through simulation results.Comment: 8 pages, 5 figure
    • …
    corecore