679 research outputs found

    A geometric approach for the upper bound theorem for Minkowski sums of convex polytopes

    Get PDF
    We derive tight expressions for the maximum number of kk-faces, 0kd10\le{}k\le{}d-1, of the Minkowski sum, P1+...+PrP_1+...+P_r, of rr convex dd-polytopes P1,...,PrP_1,...,P_r in Rd\mathbb{R}^d, where d2d\ge{}2 and r<dr<d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [2]. In contrast to Adiprasito and Sanyal's approach, which uses tools from Combinatorial Commutative Algebra, our approach is purely geometric and uses basic notions such as ff- and hh-vector calculus and shellings, and generalizes the methodology used in [15] and [14] for proving upper bounds on the ff-vector of the Minkowski sum of two and three convex polytopes, respectively. The key idea behind our approach is to express the Minkowski sum P1+...+PrP_1+...+P_r as a section of the Cayley polytope C\mathcal{C} of the summands; bounding the kk-faces of P1+...+PrP_1+...+P_r reduces to bounding the subset of the (k+r1)(k+r-1)-faces of C\mathcal{C} that contain vertices from each of the rr polytopes. We end our paper with a sketch of an explicit construction that establishes the tightness of the upper bounds.Comment: 43 pages; minor changes (mostly typos

    A Product Formula for the Normalized Volume of Free Sums of Lattice Polytopes

    Full text link
    The free sum is a basic geometric operation among convex polytopes. This note focuses on the relationship between the normalized volume of the free sum and that of the summands. In particular, we show that the normalized volume of the free sum of full dimensional polytopes is precisely the product of the normalized volumes of the summands.Comment: Published in the proceedings of 2017 Southern Regional Algebra Conferenc

    The maximum number of faces of the Minkowski sum of two convex polytopes

    Get PDF
    We derive tight expressions for the maximum number of kk-faces, 0kd10\le{}k\le{}d-1, of the Minkowski sum, P1P2P_1\oplus{}P_2, of two dd-dimensional convex polytopes P1P_1 and P2P_2, as a function of the number of vertices of the polytopes. For even dimensions d2d\ge{}2, the maximum values are attained when P1P_1 and P2P_2 are cyclic dd-polytopes with disjoint vertex sets. For odd dimensions d3d\ge{}3, the maximum values are attained when P1P_1 and P2P_2 are d2\lfloor\frac{d}{2}\rfloor-neighborly dd-polytopes, whose vertex sets are chosen appropriately from two distinct dd-dimensional moment-like curves.Comment: 37 pages, 8 figures, conference version to appear at SODA 2012; v2: fixed typos, made stylistic changes, added figure

    Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

    Get PDF
    Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time
    corecore