2,901 research outputs found

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Application of support vector machines on the basis of the first Hungarian bankruptcy model

    Get PDF
    In our study we rely on a data mining procedure known as support vector machine (SVM) on the database of the first Hungarian bankruptcy model. The models constructed are then contrasted with the results of earlier bankruptcy models with the use of classification accuracy and the area under the ROC curve. In using the SVM technique, in addition to conventional kernel functions, we also examine the possibilities of applying the ANOVA kernel function and take a detailed look at data preparation tasks recommended in using the SVM method (handling of outliers). The results of the models assembled suggest that a significant improvement of classification accuracy can be achieved on the database of the first Hungarian bankruptcy model when using the SVM method as opposed to neural networks

    Cost-Sensitive Metaheuristic Optimization-Based Neural Network with Ensemble Learning for Financial Distress Prediction

    Get PDF
    Financial distress prediction is crucial in the financial domain because of its implications for banks, businesses, and corporations. Serious financial losses may occur because of poor financial distress prediction. As a result, significant efforts have been made to develop prediction models that can assist decision-makers to anticipate events before they occur and avoid bankruptcy, thereby helping to improve the quality of such tasks. Because of the usual highly imbalanced distribution of data, financial distress prediction is a challenging task. Hence, a wide range of methods and algorithms have been developed over recent decades to address the classification of imbalanced datasets. Metaheuristic optimization-based artificial neural networks have shown exciting results in a variety of applications, as well as classification problems. However, less consideration has been paid to using a cost sensitivity fitness function in metaheuristic optimization-based artificial neural networks to solve the financial distress prediction problem. In this work, we propose ENS_PSONNcost and ENS_CSONNcost: metaheuristic optimization-based artificial neural networks that utilize a particle swarm optimizer and a competitive swarm optimizer and five cost sensitivity fitness functions as the base learners in a majority voting ensemble learning paradigm. Three extremely imbalanced datasets from Spanish, Taiwanese, and Polish companies were considered to avoid dataset bias. The results showed significant improvements in the g-mean (the geometric mean of sensitivity and specificity) metric and the F1 score (the harmonic mean of precision and sensitivity) while maintaining adequately high accuracy.Spanish Government PID2020-115570GB-C2

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    Credit risk evaluation modeling using evolutionary linear SVM classifiers and sliding window approach

    Get PDF
    AbstractThis paper presents a study on credit risk evaluation modeling using linear Support Vector Machines (SVM) classifiers, combined with evolutionary parameter selection using Genetic Algorithms and Particle Swarm Optimization, and sliding window approach. Discriminant analysis was applied for evaluation of financial instances and dynamic formation of bankruptcy classes. The possibilities of feature selection application were also researched by applying correlation-based feature subset evaluator. The research demonstrates a possibility to develop and apply an intelligent classifier based on original discriminant analysis method evaluation and shows that it might perform bankruptcy identification better than original model

    Feature selection for bankruptcy prediction: a multi-objective optimization approach

    Get PDF
    In this work a Multi-Objective Evolutionary Algorithm (MOEA) was applied for feature selection in the problem of bankruptcy prediction. The aim is to maximize the accuracy of the classifier while keeping the number of features low. A two-objective problem - minimization of the number of features and accuracy maximization – was fully analyzed using two classifiers, Logistic Regression (LR) and Support Vector Machines (SVM). Simultaneously, the parameters required by both classifiers were also optimized. The validity of the methodology proposed was tested using a database containing financial statements of 1200 medium sized private French companies. Based on extensive tests it is shown that MOEA is an efficient feature selection approach. Best results were obtained when both the accuracy and the classifiers parameters are optimized. The method proposed can provide useful information for the decision maker in characterizing the financial health of a company
    • 

    corecore