15 research outputs found

    Optimal k-means clustering using artificial bee colony algorithm with variable food sources length

    Get PDF
    Clustering is a robust machine learning task that involves dividing data points into a set of groups with similar traits. One of the widely used methods in this regard is the k-means clustering algorithm due to its simplicity and effectiveness. However, this algorithm suffers from the problem of predicting the number and coordinates of the initial clustering centers. In this paper, a method based on the first artificial bee colony algorithm with variable-length individuals is proposed to overcome the limitations of the k-means algorithm. Therefore, the proposed technique will automatically predict the clusters number (the value of k) and determine the most suitable coordinates for the initial centers of clustering instead of manually presetting them. The results were encouraging compared with the traditional k-means algorithm on three real-life clustering datasets. The proposed algorithm outperforms the traditional k-means algorithm for all tested real-life datasets

    A Novel Clustering Algorithm Inspired by Membrane Computing

    Get PDF
    P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature

    Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

    Get PDF
    A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages such as fast convergence rate, intelligent operators and simultaneous local and global search which are the motivations behind choosing this algorithm. In the Extended Cuckoo Algorithm, we have enhanced the operators in the classical version of the Cuckoo algorithm. The proposed operator of production of the initial population is based on a Chaos trail whereas in the classical version, it is based on randomized trail. Moreover, allocating the number of eggs to each cuckoo in the revised algorithm is done based on its fitness. Another improvement is in cuckoos’ migration which is performed with different deviation degrees. The proposed method is evaluated on several standard data sets at UCI database and its performance is compared with those of Black Hole (BH), Big Bang Big Crunch (BBBC), Cuckoo Search Algorithm (CSA), traditional Cuckoo Optimization Algorithm (COA) and K-means algorithm. The results obtained are compared in terms of purity degree, coefficient of variance, convergence rate and time complexity. The simulation results show that the proposed algorithm is capable of yielding the optimized solution with higher purity degree, faster convergence rate and stability in comparison to the other compared algorithms

    An unsupervised learning algorithm for membrane computing

    Get PDF
    This paper focuses on the unsupervised learning problem within membrane computing, and proposes an innovative solution inspired by membrane computing techniques, the fuzzy membrane clustering algorithm. An evolution–communication P system with nested membrane structure is the core component of the algorithm. The feasible cluster centers are represented by means of objects, and three types of membranes are considered: evolution, local store, and global store. Based on the designed membrane structure and the inherent communication mechanism, a modified differential evolution mechanism is developed to evolve the objects in the system. Under the control of the evolution–communication mechanism of the P system, the proposed fuzzy clustering algorithm achieves good fuzzy partitioning for a data set. The proposed fuzzy clustering algorithm is compared to three recently-developed and two classical clustering algorithms for five artificial and five real-life data sets.National Natural Science Foundation of China No 61170030National Natural Science Foundation of China No 61472328Chunhui Project Foundation of the Education Department of China No. Z2012025Chunhui Project Foundation of the Education Department of China No. Z2012031Sichuan Key Technology Research and Development Program No. 2013GZX015

    A NOVEL CLUSTERING ALGORITHM BASED ON P SYSTEMS

    Get PDF
    Abstract. Membrane computing (known as P systems) is a novel class of distributed parallel computing models. In this paper, a partition-based clustering algorithm under the framework of membrane computing is proposed. The clustering algorithm is based on a tissue-like P system, which is used to exploit the optimal cluster centers for a data set. Each object in the tissue-like P system represents a group of candidate cluster center

    Clonal Selection based Fuzzy C-Means Algorithm for Clustering

    Get PDF
    ABSTRACT In recent years, fuzzy based clustering approaches have shown to outperform state-of-the-art hard clustering algorithms in terms of accuracy. The difference between hard clustering and fuzzy clustering is that in hard clustering each data point of the data set belongs to exactly one cluster, and in fuzzy clustering each data point belongs to several clusters that are associated with a certain membership degree. Fuzzy c-means clustering is a well-known and effective algorithm, however, the random initialization of the centroids directs the iterative process to converge to local optimal solutions easily. In order to address this issue a clonal selection based fuzzy c-means algorithm (CSFCM) is introduced. CSFCM is compared with the basic Fuzzy C-Means (FCM) algorithm, a genetic algorithm based FCM (GAFCM) algorithm, and a particle swarm optimization based FCM (PSOFCM) algorithm

    A genetic algorithm that exchanges neighboring centers for k-means clustering

    No full text
    We present a genetic algorithm for selecting centers to seed the popular k-means method for clustering. Using a novel crossover operator that exchanges neighboring centers, our GA identifies superior partitions using both benchmark and large simulated data sets

    An efficient robust hyperheuristic clustering algorithm

    Get PDF
    Observations on recent research of clustering problems illustrate that most of the approaches used to deal with these problems are based on meta-heuristic and hybrid meta-heuristic to improve the solutions. Hyperheuristic is a set of heuristics, meta- heuristics and high-level search strategies that work on the heuristic search space instead of solution search space. Hyperheuristics techniques have been employed to develop approaches that are more general than optimization search methods and traditional techniques. In the last few years, most studies have focused considerably on the hyperheuristic algorithms to find generalized solutions but highly required robust and efficient solutions. The main idea in this research is to develop techniques that are able to provide an appropriate level of efficiency and high performance to find a class of basic level heuristic over different type of combinatorial optimization problems. Clustering is an unsupervised method in the data mining and pattern recognition. Nevertheless, most of the clustering algorithms are unstable and very sensitive to their input parameters. This study, proposes an efficient and robust hyperheuristic clustering algorithm to find approximate solutions and attempts to generalize the algorithm for different cluster problem domains. Our proposed clustering algorithm has managed to minimize the dissimilarity of all points of a cluster using hyperheuristic method, from the gravity center of the cluster with respect to capacity constraints in each cluster. The algorithm of hyperheuristic has emerged from pool of heuristic techniques. Mapping between solution spaces is one of the powerful and prevalent techniques in optimization domains. Most of the existing algorithms work directly with solution spaces where in some cases is very difficult and is sometime impossible due to the dynamic behavior of data and algorithm. By mapping the heuristic space into solution spaces, it would be possible to make easy decision to solve clustering problems. The proposed hyperheuristic clustering algorithm performs four major components including selection, decision, admission and hybrid metaheuristic algorithm. The intensive experiments have proven that the proposed algorithm has successfully produced robust and efficient clustering results
    corecore