15,276 research outputs found

    Toward Mesh-Invariant 3D Generative Deep Learning with Geometric Measures

    Full text link
    3D generative modeling is accelerating as the technology allowing the capture of geometric data is developing. However, the acquired data is often inconsistent, resulting in unregistered meshes or point clouds. Many generative learning algorithms require correspondence between each point when comparing the predicted shape and the target shape. We propose an architecture able to cope with different parameterizations, even during the training phase. In particular, our loss function is built upon a kernel-based metric over a representation of meshes using geometric measures such as currents and varifolds. The latter allows to implement an efficient dissimilarity measure with many desirable properties such as robustness to resampling of the mesh or point cloud. We demonstrate the efficiency and resilience of our model with a generative learning task of human faces

    Dual-to-kernel learning with ideals

    Get PDF
    In this paper, we propose a theory which unifies kernel learning and symbolic algebraic methods. We show that both worlds are inherently dual to each other, and we use this duality to combine the structure-awareness of algebraic methods with the efficiency and generality of kernels. The main idea lies in relating polynomial rings to feature space, and ideals to manifolds, then exploiting this generative-discriminative duality on kernel matrices. We illustrate this by proposing two algorithms, IPCA and AVICA, for simultaneous manifold and feature learning, and test their accuracy on synthetic and real world data.Comment: 15 pages, 1 figur

    Learning Generative Models with Sinkhorn Divergences

    Full text link
    The ability to compare two degenerate probability distributions (i.e. two probability distributions supported on two distinct low-dimensional manifolds living in a much higher-dimensional space) is a crucial problem arising in the estimation of generative models for high-dimensional observations such as those arising in computer vision or natural language. It is known that optimal transport metrics can represent a cure for this problem, since they were specifically designed as an alternative to information divergences to handle such problematic scenarios. Unfortunately, training generative machines using OT raises formidable computational and statistical challenges, because of (i) the computational burden of evaluating OT losses, (ii) the instability and lack of smoothness of these losses, (iii) the difficulty to estimate robustly these losses and their gradients in high dimension. This paper presents the first tractable computational method to train large scale generative models using an optimal transport loss, and tackles these three issues by relying on two key ideas: (a) entropic smoothing, which turns the original OT loss into one that can be computed using Sinkhorn fixed point iterations; (b) algorithmic (automatic) differentiation of these iterations. These two approximations result in a robust and differentiable approximation of the OT loss with streamlined GPU execution. Entropic smoothing generates a family of losses interpolating between Wasserstein (OT) and Maximum Mean Discrepancy (MMD), thus allowing to find a sweet spot leveraging the geometry of OT and the favorable high-dimensional sample complexity of MMD which comes with unbiased gradient estimates. The resulting computational architecture complements nicely standard deep network generative models by a stack of extra layers implementing the loss function

    Stochastic Algorithm For Parameter Estimation For Dense Deformable Template Mixture Model

    Full text link
    Estimating probabilistic deformable template models is a new approach in the fields of computer vision and probabilistic atlases in computational anatomy. A first coherent statistical framework modelling the variability as a hidden random variable has been given by Allassonni\`ere, Amit and Trouv\'e in [1] in simple and mixture of deformable template models. A consistent stochastic algorithm has been introduced in [2] to face the problem encountered in [1] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some "SAEM-like" algorithm to approximate the MAP estimator in the general Bayesian setting of mixture of deformable template model. We also prove the convergence of this algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images
    • …
    corecore