37 research outputs found

    On the Capacity of Densely Packed Arrays with Mutual Coupling and Correlated Noise

    Get PDF
    Capacity of a wireless link can be enhanced by increasing the number of receive antennas. However, imposed receiver physical size constraints necessitate that the antenna elements be in close proximity, which typically reduces the overall link capacity of the wireless channel. Counterintuitively, under certain conditions the capacity of the overall link can be enhanced by decreasing antenna spacings. The focus of this paper is that of identifying the fundamental mechanisms and the conditions that give rise to this excess capacity. Closed-form expressions that directly quantify this capacity gain are derived based on a representative circuit theoretic model. Interesting insights are developed about the impact of different noise and interference sources and the limiting effect of heat losses in the antenna system. The capacity analysis is subsequently generalized to encompass the effect of antenna current deformation and load mismatch due to mutual coupling, based on the standard Method of Moments (MoM) analysis, demonstrating similar capacity enhancement behavior as predicted by the closed-form expressions

    On methods to determine bounds on the Q-factor for a given directivity

    Full text link
    This paper revisit and extend the interesting case of bounds on the Q-factor for a given directivity for a small antenna of arbitrary shape. A higher directivity in a small antenna is closely connected with a narrow impedance bandwidth. The relation between bandwidth and a desired directivity is still not fully understood, not even for small antennas. Initial investigations in this direction has related the radius of a circumscribing sphere to the directivity, and bounds on the Q-factor has also been derived for a partial directivity in a given direction. In this paper we derive lower bounds on the Q-factor for a total desired directivity for an arbitrarily shaped antenna in a given direction as a convex problem using semi-definite relaxation techniques (SDR). We also show that the relaxed solution is also a solution of the original problem of determining the lower Q-factor bound for a total desired directivity. SDR can also be used to relax a class of other interesting non-convex constraints in antenna optimization such as tuning, losses, front-to-back ratio. We compare two different new methods to determine the lowest Q-factor for arbitrary shaped antennas for a given total directivity. We also compare our results with full EM-simulations of a parasitic element antenna with high directivity.Comment: Correct some minor typos in the previous versio

    The Statistics of Superdirective Beam Patterns

    Get PDF
    Superdirective arrays have been extensively studied because of their considerable potential accompanied, unfortunately, by a high sensitivity to random errors that affect the responses and positions of array elements. However, the statistics of their actual beam pattern (BP) has never been systematically investigated. This paper shows that the Rician probability density function (PDF), sometimes adopted to study the impact of errors in conventional arrays, is a valid approximation for superdirective BP statistics only where some mathematical terms are negligible. The paper also shows that this is the case for all linear end-fire arrays considered. A similar study is proposed concerning the correlation between BP lobes, showing that for the superdirective arrays considered the lobes, especially non-adjacent ones, are almost independent. Furthermore, knowledge of the PDF of the actual BP allows one to define quantile BP functions, whose probability of being exceeded, at any point, is fixed. Combining the lobes' independence with quantile BP functions, an empirical equation for the probability that the entire actual BP will not exceed a quantile function over an interval larger than a given size is obtained. This new knowledge and these tools make it possible to devise new methods to design robust superdirective arrays via optimization goals with clearer and more relevant statistical meaning

    Mixtures of Multipoles - Should They Be in Your EM Toolbox?

    Full text link
    Multipole expansions are an essential analysis tool in the foundations of the descriptions of the electromagnetic fields radiated by electric and magnetic sources. Nevertheless, practical antenna systems generally rely on them as an academic explanation, not as a fundamental building block. An overview of the recent surge in interest in multipole sources and their fields to achieve useful radiated and scattered fields with, for example, high directivities in preferred directions is given. Topics include Huygens sources, dielectric-based Mie-tronics, edge-singularity multipoles, and exotic metamaterial-inspired superdirective lenses and radiators. While there has been a never-ending stream of physics publications, little has happened in the engineering electromagnetics community. I will try to answer the title with examples that may stimulate interest in the field

    Implementation and evaluation of a low complexity microphone array for speaker recognition

    Get PDF
    Includes bibliographical references (leaves 83-86).This thesis discusses the application of a microphone array employing a noise canceling beamforming technique for improving the robustness of speaker recognition systems in a diffuse noise field

    Enhancing resolution properties of array antennas via field extrapolation: application to MIMO systems

    Get PDF
    This paper is concerned with spatial properties of linear arrays of antennas spaced less than half wavelength. Possible applications are in multiple-input multiple-output (MIMO) wireless links for the purpose of increasing the spatial multiplexing gain in a scattering environment, as well as in other areas such as sonar and radar. With reference to a receiving array, we show that knowledge of the received field can be extrapolated beyond the actual array size by exploiting the finiteness of the interval of real directions from which the field components impinge on the array. This property permits to increase the performance of the array in terms of angular resolution. A simple signal processing technique is proposed allowing formation of a set of beams capable to cover uniformly the entire horizon with an angular resolution better than that achievable by a classical uniform-weighing half-wavelength-spaced linear array. Results are also applicable to active arrays. As the above approach leads to arrays operating in super-directive regime, we discuss all related critical aspects, such as sensitivity to external and internal noises and to array imperfections, and bandwidth, so as to identify the basic design criteria ensuring the array feasibility

    Adaptive array processing for multiple microphone hearing aids

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1989.Includes bibliographical references.Supported in part by the National Institutes of Neurological and Communicative Disorders and Stroke of the National Institutes of Health. RO1-NS21322Patrick M. Peterson
    corecore