29,670 research outputs found

    A mathematical model and inversion procedure for Magneto-Acousto-Electric Tomography (MAET)

    Full text link
    Magneto-Acousto-Electric Tomography (MAET), also known as the Lorentz force or Hall effect tomography, is a novel hybrid modality designed to be a high-resolution alternative to the unstable Electrical Impedance Tomography. In the present paper we analyze existing mathematical models of this method, and propose a general procedure for solving the inverse problem associated with MAET. It consists in applying to the data one of the algorithms of Thermo-Acoustic tomography, followed by solving the Neumann problem for the Laplace equation and the Poisson equation. For the particular case when the region of interest is a cube, we present an explicit series solution resulting in a fast reconstruction algorithm. As we show, both analytically and numerically, MAET is a stable technique yilelding high-resolution images even in the presence of significant noise in the data

    On the use of sensitivity tests in seismic tomography

    Get PDF
    ACKNOWLEDGEMENTS This work was partly supported by ARC Discovery Project DP120103673 and by the Research Council of Norway through its Centres of Excellence funding scheme, project number 223272. We thank Maximilliano Bezada and an anonymous referee for constructive comments which improved the original version of the manuscript. We also thank the Editor, A. Morelli, for providing additional helpful comments.Peer reviewedPublisher PD

    Application and comparison of three tomographic techniques for detection of decay in trees

    No full text
    This paper reports application of electric, ultrasonic, and georadar tomography for detection of decay in trees and their comparison with the traditional penetrometer. Their feasibility in arboriculture is also evaluated, critically considering some "open problems." The experiments were carried out in an urban environment on two plane (Platanus hybrida Brot.) trees. Both trees, after felling, showed extensive white rot in the central cylinder. The electric tomography revealed low resistivity zones roughly centered in the trunk. A comparison with the successively cut sections showed a fine correspondence to decayed areas and a strong correspondence between high moisture zones and low resistivity zones. Ultrasonic tomography demonstrated to be a very effective tool for the detection of internal decay, accurately locating the position of the anomalies and estimating their size, shape, and characteristic in terms of mechanical properties. With the georadar technique, the high contrast of electromagnetic impedance measured between the inner decayed section and the outside sound section allowed the detection of the interface between the sound and decayed section of the tree, using radar acquisition in reflection modality. The penetrometer profiles detected the low-resistance areas inside the two trunk

    On the Adjoint Operator in Photoacoustic Tomography

    Get PDF
    Photoacoustic Tomography (PAT) is an emerging biomedical "imaging from coupled physics" technique, in which the image contrast is due to optical absorption, but the information is carried to the surface of the tissue as ultrasound pulses. Many algorithms and formulae for PAT image reconstruction have been proposed for the case when a complete data set is available. In many practical imaging scenarios, however, it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. In such cases, image reconstruction algorithms that can incorporate prior knowledge to ameliorate the loss of data are required. Hence, recently there has been an increased interest in using variational image reconstruction. A crucial ingredient for the application of these techniques is the adjoint of the PAT forward operator, which is described in this article from physical, theoretical and numerical perspectives. First, a simple mathematical derivation of the adjoint of the PAT forward operator in the continuous framework is presented. Then, an efficient numerical implementation of the adjoint using a k-space time domain wave propagation model is described and illustrated in the context of variational PAT image reconstruction, on both 2D and 3D examples including inhomogeneous sound speed. The principal advantage of this analytical adjoint over an algebraic adjoint (obtained by taking the direct adjoint of the particular numerical forward scheme used) is that it can be implemented using currently available fast wave propagation solvers.Comment: submitted to "Inverse Problems

    Inversions of statistical parameters of an acoustic signal in range-dependent environments with applications in ocean acoustic tomography

    Get PDF
    The paper presents an application of a method for the characterization of underwater acoustic signals based on the statistics of their wavelet transform sub-band coefficients in range-dependent environments. As it was illustrated in previous works, this statistical characterization scheme is a very efficient tool for obtaining observables to be exploited in problems of ocean acoustic tomography and geoacoustic inversion, when range-independent environments are considered. Now the scheme is applied in range-dependent environments for the estimation of range-dependent features in shallow water. A simple denoising strategy, also presented in the paper, is shown to enhance the quality of the inversion results, as it helps to keep the signal characterization to the energy significant part of it. The results presented for typical test cases are encouraging and indicative of the potential of the method for the treatment of inverse problems in acoustical oceanography

    Tomography and geodynamics structure of the Ibero- Maghrebian region

    Get PDF
    The present study has two main goals: 1) use the most actual seismological data from recent earthquakes in the extended Alboran region to develop a geodynamic-structural model for the region through the application of seismic local tomography techniques; 2) modelling seismogenic sources using specific applications of analysis. The structural scheme detailed in depth will allows us to define possible structural blocks in region between north of Morocco and Alboran sea. Currently the GPS studies show local movements in northern morocco independently of the general movement of the African plate. The present tomographic study focuses on SW Ibero-Maghrebian region. The P and S arrival times at 52 stations located at north of Morocco (National Institute of Geophysics, CNRST, Rabat), south of Portugal (Instituto de Meteorologia, Lisbon) and Spain (Instituto Geografico National, Madrid) are used for the period between 12/1988 and 30/2008. We use a linearized inversion procedure to find a 3D velocity model for the studied region. The resolution tests indicate that the calculated images give near true structure for the Tanger peninsula, the Alhoceima region and southern Spain at 5km depth. At 15, 30, 45 km depth we observe a near true structure in northern Morocco, and southern Spain. At 60 and 100 km, the southern Spain and SW of Alboran Sea gives a near true structure. The resulting tomographic image shows that the total crustal thickness varies between 25 and 35 km and contains low-velocity anomalies. Is defined clearly a prominent negative P- wave velocity anomaly with a maximum decrease of approximately 6 per cent, at 15 km depth, in the northern Morocco. This low velocity demarcates a small bloc located between Iberia and African plate. This bloc is presented by a prominent high velocity anomaly that shows a maximum increase in P-wave velocity of approximately 6 per cent. The area with high velocity values could represent brittle and competent parts of the crust and lithosphere which sustain seismogenic stress where asperities along the faults could exist and probably more with the Iberia-Africa plate boundary. Strong ground motions from major earthquakes depend strongly upon the 3D seismic velocity structure of the crust. Moreover the 3D velocity model is crucial for a better comprehension of structures behavior and has important practical applications toward understanding earthquake hazard in the Ibero-Maghrebian region. In particular, we hope to contribute, with this model, for seismic risk mitigation in north of Morocco

    East African topography and volcanism explained by a single, migrating plume

    Get PDF
    Anomalous topographic swells and Cenozoic volcanism in east Africa have been associated with mantle plumes. Several models involving one or more fixed plumes beneath the northeastward migrating African plate have been suggested to explain the space-time distribution of magmatism in east Africa. We devise paleogeographically constrained global models of mantle convection and, based on the evolution of flow in the deepest lower mantle, show that the Afar plume migrated southward throughout its lifetime. The models suggest that the mobile Afar plume provides a dynamically consistent explanation for the spatial extent of the southward propagation of the east African rift system (EARS), which is difficult to explain by the northeastward migration of Africa over one or more fixed plumes alone, over the last ≈45 Myrs. We further show that the age-progression of volcanism associated with the southward propagation of EARS is consistent with the apparent surface hotspot motion that results from southward motion of the modelled Afar plume beneath the northeastward migrating African plate. The models suggest that the Afar plume became weaker as it migrated southwards, consistent with trends observed in the geochemical record
    • 

    corecore