2,561 research outputs found

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    A constructive and unifying framework for zero-bit watermarking

    Get PDF
    In the watermark detection scenario, also known as zero-bit watermarking, a watermark, carrying no hidden message, is inserted in content. The watermark detector checks for the presence of this particular weak signal in content. The article looks at this problem from a classical detection theory point of view, but with side information enabled at the embedding side. This means that the watermark signal is a function of the host content. Our study is twofold. The first step is to design the best embedding function for a given detection function, and the best detection function for a given embedding function. This yields two conditions, which are mixed into one `fundamental' partial differential equation. It appears that many famous watermarking schemes are indeed solution to this `fundamental' equation. This study thus gives birth to a constructive framework unifying solutions, so far perceived as very different.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Deep Learning-Based Dynamic Watermarking for Secure Signal Authentication in the Internet of Things

    Full text link
    Securing the Internet of Things (IoT) is a necessary milestone toward expediting the deployment of its applications and services. In particular, the functionality of the IoT devices is extremely dependent on the reliability of their message transmission. Cyber attacks such as data injection, eavesdropping, and man-in-the-middle threats can lead to security challenges. Securing IoT devices against such attacks requires accounting for their stringent computational power and need for low-latency operations. In this paper, a novel deep learning method is proposed for dynamic watermarking of IoT signals to detect cyber attacks. The proposed learning framework, based on a long short-term memory (LSTM) structure, enables the IoT devices to extract a set of stochastic features from their generated signal and dynamically watermark these features into the signal. This method enables the IoT's cloud center, which collects signals from the IoT devices, to effectively authenticate the reliability of the signals. Furthermore, the proposed method prevents complicated attack scenarios such as eavesdropping in which the cyber attacker collects the data from the IoT devices and aims to break the watermarking algorithm. Simulation results show that, with an attack detection delay of under 1 second the messages can be transmitted from IoT devices with an almost 100% reliability.Comment: 6 pages, 9 figure
    • …
    corecore