668 research outputs found

    Addressing Situational and Physical Impairments and Disabilities with a Gaze-Assisted, Multi-Modal, Accessible Interaction Paradigm

    Get PDF
    Every day we encounter a variety of scenarios that lead to situationally induced impairments and disabilities, i.e., our hands are assumed to be engaged in a task, and hence unavailable for interacting with a computing device. For example, a surgeon performing an operation, a worker in a factory with greasy hands or wearing thick gloves, a person driving a car, and so on all represent scenarios of situational impairments and disabilities. In such cases, performing point-and-click interactions, text entry, or authentication on a computer using conventional input methods like the mouse, keyboard, and touch is either inefficient or not possible. Unfortunately, individuals with physical impairments and disabilities, by birth or due to an injury, are forced to deal with these limitations every single day. Generally, these individuals experience difficulty or are completely unable to perform basic operations on a computer. Therefore, to address situational and physical impairments and disabilities it is crucial to develop hands-free, accessible interactions. In this research, we try to address the limitations, inabilities, and challenges arising from situational and physical impairments and disabilities by developing a gaze-assisted, multi-modal, hands-free, accessible interaction paradigm. Specifically, we focus on the three primary interactions: 1) point-and-click, 2) text entry, and 3) authentication. We present multiple ways in which the gaze input can be modeled and combined with other input modalities to enable efficient and accessible interactions. In this regard, we have developed a gaze and foot-based interaction framework to achieve accurate “point-and-click" interactions and to perform dwell-free text entry on computers. In addition, we have developed a gaze gesture-based framework for user authentication and to interact with a wide range of computer applications using a common repository of gaze gestures. The interaction methods and devices we have developed are a) evaluated using the standard HCI procedures like the Fitts’ Law, text entry metrics, authentication accuracy and video analysis attacks, b) compared against the speed, accuracy, and usability of other gaze-assisted interaction methods, and c) qualitatively analyzed by conducting user interviews. From the evaluations, we found that our solutions achieve higher efficiency than the existing systems and also address the usability issues. To discuss each of these solutions, first, the gaze and foot-based system we developed supports point-and-click interactions to address the “Midas Touch" issue. The system performs at least as good (time and precision) as the mouse, while enabling hands-free interactions. We have also investigated the feasibility, advantages, and challenges of using gaze and foot-based point-and-click interactions on standard (up to 24") and large displays (up to 84") through Fitts’ Law evaluations. Additionally, we have compared the performance of the gaze input to the other standard inputs like the mouse and touch. Second, to support text entry, we developed a gaze and foot-based dwell-free typing system, and investigated foot-based activation methods like foot-press and foot gestures. We have demonstrated that our dwell-free typing methods are efficient and highly preferred over conventional dwell-based gaze typing methods. Using our gaze typing system the users type up to 14.98 Words Per Minute (WPM) as opposed to 11.65 WPM with dwell-based typing. Importantly, our system addresses the critical usability issues associated with gaze typing in general. Third, we addressed the lack of an accessible and shoulder-surfing resistant authentication method by developing a gaze gesture recognition framework, and presenting two authentication strategies that use gaze gestures. Our authentication methods use static and dynamic transitions of the objects on the screen, and they authenticate users with an accuracy of 99% (static) and 97.5% (dynamic). Furthermore, unlike other systems, our dynamic authentication method is not susceptible to single video iterative attacks, and has a lower success rate with dual video iterative attacks. Lastly, we demonstrated how our gaze gesture recognition framework can be extended to allow users to design gaze gestures of their choice and associate them to appropriate commands like minimize, maximize, scroll, etc., on the computer. We presented a template matching algorithm which achieved an accuracy of 93%, and a geometric feature-based decision tree algorithm which achieved an accuracy of 90.2% in recognizing the gaze gestures. In summary, our research demonstrates how situational and physical impairments and disabilities can be addressed with a gaze-assisted, multi-modal, accessible interaction paradigm

    Discoverable Free Space Gesture Sets for Walk-Up-and-Use Interactions

    Get PDF
    abstract: Advances in technology are fueling a movement toward ubiquity for beyond-the-desktop systems. Novel interaction modalities, such as free space or full body gestures are becoming more common, as demonstrated by the rise of systems such as the Microsoft Kinect. However, much of the interaction design research for such systems is still focused on desktop and touch interactions. Current thinking in free-space gestures are limited in capability and imagination and most gesture studies have not attempted to identify gestures appropriate for public walk-up-and-use applications. A walk-up-and-use display must be discoverable, such that first-time users can use the system without any training, flexible, and not fatiguing, especially in the case of longer-term interactions. One mechanism for defining gesture sets for walk-up-and-use interactions is a participatory design method called gesture elicitation. This method has been used to identify several user-generated gesture sets and shown that user-generated sets are preferred by users over those defined by system designers. However, for these studies to be successfully implemented in walk-up-and-use applications, there is a need to understand which components of these gestures are semantically meaningful (i.e. do users distinguish been using their left and right hand, or are those semantically the same thing?). Thus, defining a standardized gesture vocabulary for coding, characterizing, and evaluating gestures is critical. This dissertation presents three gesture elicitation studies for walk-up-and-use displays that employ a novel gesture elicitation methodology, alongside a novel coding scheme for gesture elicitation data that focuses on features most important to users’ mental models. Generalizable design principles, based on the three studies, are then derived and presented (e.g. changes in speed are meaningful for scroll actions in walk up and use displays but not for paging or selection). The major contributions of this work are: (1) an elicitation methodology that aids users in overcoming biases from existing interaction modalities; (2) a better understanding of the gestural features that matter, e.g. that capture the intent of the gestures; and (3) generalizable design principles for walk-up-and-use public displays.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Designing Intra-Hand Input for Wearable Devices

    Get PDF
    Department of Biomedical Engineering (Human Factors Engineering)Current trends toward the miniaturization of digital technology have enabled the development of versatile smart wearable devices. Powered by capable processors and equipped with advanced sensors, this novel device category can substantially impact application areas as diverse as education, health care, and entertainment. However, despite their increasing sophistication and potential, input techniques for wearable devices are still relatively immature and often fail to reflect key practical constraints in this design space. For example, on-device touch surfaces, such as the temple touchpad of Google Glass, are typically small and out-of-sight, thus limiting their expressivity capability. Furthermore, input techniques designed specifically for Head-Mounted Displays (HMDs), such as free-hand (e.g., Microsoft Hololens) or dedicated controller (e.g., Oculus VR) tracking, exhibit low levels of social acceptability (e.g., large-scale hand gestures are arguably unsuited for use in public settings) and are vulnerable to cause fatigue (e.g., gorilla arm) in long-term use. Such factors limit their real-world applicability. In addition to these difficulties, typical wearable use scenarios feature various situational impairments, such as encumbered use (e.g., having one hand busy), mobile use (e.g., while walking), and eyes-free use (e.g., while responding to real-world stimuli). These considerations are weakly catered for by the design of current wearable input systems. This dissertation seeks to address these problems by exploring the design space of intra-hand input, which refers to small-scale actions made within a single hand. In particular, through a hand-mounted sensing system, intra-hand input can include diverse input surfaces, such as between fingers (e.g., fingers-to-thumb and thumb-to-fingers inputs) to body surfaces (e.g., hand-to-face inputs). Here, I identify several advantages of this form of hand input, as follows. First, the hand???s high dexterity can enable comfortable, quick, accurate, and expressive inputs of various types (e.g., tap, flick, or swipe touches) at multiple locations (e.g., on each of the five fingers or other body surfaces). In addition, many viable forms of these input movements are small-scale, promising low fatigue over long-term use and basic actions that are discrete and socially acceptable. Finally, intra-hand input is inherently robust to many common situational impairments, such as use that take place in eyes-free, public, or mobile settings. Consolidating these prospective advantages, the general claim of this dissertation is that intra-hand input is an expressive and effective modality for interaction with wearable devices such as HMDs. The dissertation seeks to demonstrate that this claim holds in a range of wearable scenarios and applications, and with measures of both objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability). Specifically, in this dissertation, I verify the referred general claim by demonstrating it in three separate scenarios. I begin by exploring the design space of intra-hand input by studying the specific case of touches to a set of five touch-sensitive five nails. To this end, I first conduct an exploratory design process in which a large set of 144 input actions are generated, followed by two empirical studies on comfort and performance that refine such a large set to 29 viable inputs. The results of this work indicate that nail touches are an accessible, expressive, and comfortable form of input. Based on these results, in the second scenario, I focused on text entry in a mobile setting with the same nail form-factor system. Through a comparative empirical study involving both sitting and mobile conditions, nail-based touches were confirmed to be robust to physical disturbance while mobile. A follow-up word repetition study indicated that text entry studies of up to 33.1 WPM could be achieved when key layouts were appropriately optimized for the nail form factor. These results reveal that intra-hand inputs are suitable for complex input tasks in mobile contexts. In the third scenario, I explored an alternative form of intra-hand input that relies on small-scale hand touches to the face via the lens of social acceptability. This scenario is especially valuable for multi-wearables usage contexts, as single hand-mounted systems can enable input from a proximate distance for each scattered device around the body (e.g., hand-to-face input for smartglass or ear-worn device and inter-finger input with wristwatch usage posture for smartwatch). In fact, making an input on the face can attract unwanted, undue attention from the public. Thus, the design stage of this work involved elicitation of diverse unobtrusive and socially acceptable hand-to-face actions from users, that is, outcomes that were then refined into five design strategies that can achieve socially acceptable input in this setting. Follow-up studies on a prototype that instantiates these strategies validate their effectiveness and provide a characterization of the speed and accuracy achieved by the user with each system. I argue that this spectrum of metrics, recorded over a diverse set of scenarios, supports the general claim that intra-hand inputs for wearable devices can be expressively and effectively operated in terms of objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability) in common wearable use scenarios, such as when mobile and in public. I conclude with a discussion of the contributions of this work, scope for further developments, and the design issues that need to be considered by researchers, designers, and developers who seek to implement these types of input. This discussion spans diverse considerations, such as suitable tracking technologies, appropriate body regions, viable input types, and effective design processes. Through this discussion, this dissertation seeks to provide practical guidance to support and accelerate further research efforts aimed at achieving real-world systems that realize the potential of intra-hand input for wearables.clos

    Exploring the Opportunity of Augmented Reality (AR) in Supporting Older Adults Explore and Learn Smartphone Applications

    Full text link
    The global aging trend compels older adults to navigate the evolving digital landscape, presenting a substantial challenge in mastering smartphone applications. While Augmented Reality (AR) holds promise for enhancing learning and user experience, its role in aiding older adults' smartphone app exploration remains insufficiently explored. Therefore, we conducted a two-phase study: (1) a workshop with 18 older adults to identify app exploration challenges and potential AR interventions, and (2) tech-probe participatory design sessions with 15 participants to co-create AR support tools. Our research highlights AR's effectiveness in reducing physical and cognitive strain among older adults during app exploration, especially during multi-app usage and the trial-and-error learning process. We also examined their interactional experiences with AR, yielding design considerations on tailoring AR tools for smartphone app exploration. Ultimately, our study unveils the prospective landscape of AR in supporting the older demographic, both presently and in future scenarios

    Embodied memories: Reviewing the role of the body in memory processes

    Get PDF

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement

    Supporting Voice-Based Natural Language Interactions for Information Seeking Tasks of Various Complexity

    Get PDF
    Natural language interfaces have seen a steady increase in their popularity over the past decade leading to the ubiquity of digital assistants. Such digital assistants include voice activated assistants, such as Amazon's Alexa, as well as text-based chat bots that can substitute for a human assistant in business settings (e.g., call centers, retail / banking websites) and at home. The main advantages of such systems are their ease of use and - in the case of voice-activated systems - hands-free interaction. The majority of tasks undertaken by users of these commercially available voice-based digital assistants are simple in nature, where the responses of the agent are often determined using a rules-based approach. However, such systems have the potential to support users in completing more complex and involved tasks. In this dissertation, I describe experiments investigating user behaviours when interacting with natural language systems and how improvements in design of such systems can benefit the user experience. Currently available commercial systems tend to be designed in a way to mimic superficial characteristics of a human-to-human conversation. However, the interaction with a digital assistant differs significantly from the interaction between two people, partly due to limitations of the underlying technology such as automatic speech recognition and natural language understanding. As computing technology evolves, it may make interactions with digital assistants resemble those between humans. The first part of this thesis explores how users will perceive the systems that are capable of human-level interaction, how users will behave while communicating with such systems, and new opportunities that may be opened by that behaviour. Even in the absence of the technology that allows digital assistants to perform on a human level, the digital assistants that are widely adopted by people around the world are found to be beneficial for a number of use-cases. The second part of this thesis describes user studies aiming at enhancing the functionality of digital assistants using the existing level of technology. In particular, chapter 6 focuses on expanding the amount of information a digital assistant is able to deliver using a voice-only channel, and chapter 7 explores how expanded capabilities of voice-based digital assistants would benefit people with visual impairments. The experiments presented throughout this dissertation produce a set of design guidelines for existing as well as potential future digital assistants. Experiments described in chapters 4, 6, and 7 focus on supporting the task of finding information online, while chapter 5 considers a case of guiding a user through a culinary recipe. The design recommendations provided by this thesis can be generalised in four categories: how naturally a user can communicate their thoughts to the system, how understandable the system's responses are to the user, how flexible the system's parameters are, and how diverse the information delivered by the system is
    • 

    corecore