6,936 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    Simulation support for internet-based energy services

    Get PDF
    The rapidly developing Internet broadband network offers new opportunities for deploying a range of energy, environment and health-related services for people in their homes and workplaces. Several of these services can be enabled or enhanced through the application of building simulation. This paper describes the infrastructure for e-services under test within a European research project and shows the potential for simulation support for these services

    Propagation of uncertainty in a knowledge-based system to assess energy management strategies for new technologies

    Get PDF
    The goal of this project is to investigate the propagation of uncertainty in a knowledge-based system that assesses energy management strategies for new gas and electric technologies that can help reduce energy consumption and demand. The new technologies that have been investigated include lighting, electric heat pumps, motors, refrigerators, microwave clothes dryers, freeze concentration, electric vehicles, gas furnaces, gas heat pumps, engine-driven chillers, absorption chillers, and natural gas vehicles distributed throughout the residential, commercial, industrial, and transportation sectors;The description of a complex assessment system may be simplified by allowing some degree of uncertainty. A number of uncertainty-representing mechanisms, such as probability theory, certainty factors, Dempster-Shafer theory, fuzzy logic, rough sets, non-numerical methods, and belief networks, were reviewed and compared. The proper application of uncertainty provides an effective and efficient way to represent knowledge;A knowledge-based system has been developed to assess the impacts of rebate programs on customer adoption of new technologies and, hence, the reductions in energy and demand. Three modes have been programmed: (1) one in which uncertainty is not considered, (2) another where fuzzy logic with linguistic variables is used to represent uncertainty, and (3) one in which uncertainty is represented using Dempster-Shafer theory with basic probability assignments. A correlation for rebate, expected (energy) savings, and customer adoption is employed in the knowledge base. Predictions for annual adoption of a new technology are made for specified useful life, rebate, and expected savings; or a suggested rebate can be determined for specified useful life, expected savings, and annual adoption. With input for energy use and demand for each technology, the impacts of rebate programs on energy use and power demand can be evaluated;This report and the knowledge-based system should help utilities determine these new technologies that are most promising and these strategies that should be emphasized in their energy management programs

    DEVELOPMENT OF FORECASTING AND SCHEDULING METHODS AND DATA ANALYTICS BASED CONTROLS FOR SMART LOADS IN RESIDENTIAL BUILDINGS.

    Get PDF
    DEVELOPMENT OF FORECASTING AND SCHEDULING METHODS AND DATA ANALYTICS BASED CONTROLS FOR SMART LOADS IN RESIDENTIAL BUILDINGS

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio
    corecore