279 research outputs found

    A Review on Ai based Data Authentication by Monitoring Behavioural Pattern

    Get PDF
    In this study, we do an experiment to examine the viability of a continually authenticating approach based on the monitoring of users' activities to confirm their identities using particular user profiles that are modeled using AI techniques. To carry out the experiment, a unique application was created to collect user data in a supervised situation in which certain tasks must be finished in advance. After anonymization, this dataset will be made accessible to the public. Furthermore, a publicly available dataset was utilized for benchmarking, enabling our methods to be verified in an unguided environment. These data were processed to identify several important properties that might be utilized for training three distinct AI methods: Multi-Layer Perceptrons, Support Vector Machines, and a deep learning network. These methods proved to be successful in both situations and were able to effectively authenticate users. To detect imposters when an authenticated session is hijacked in a real-world setting, a continuous authentication method was designed and tested utilizing weighted sliding windows, and a rejection test was finally carried out

    Security Limitations with Cloud Computing: Well-defined Security Measures Using Cloud Computing

    Get PDF
    Due to the ever-growing threat of security breaches that information technology (IT) organizations continually face, protecting customer information stored in the cloud is critical to ensure data integrity. Research shows that new categories of data breaches frequently emerge; thus, security strategies that build trust in consumers and improve system performance are crucial. The purpose of this qualitative multiple case study was to explore and analyze the strategies used by database administrators (DBAs) to secure data in a private infrastructure as a service (IaaS) cloud environment. The participants comprised of six DBAs from two IT companies in Baltimore, Maryland, with experience and knowledge of security strategies to secure data in private IaaS clouds. The disruptive innovation theory was the foundational framework for this study. Data were collected using semistructured interviews and a review of seven organizational documents. A thematic analysis was used to analyze the data. Two key themes are addressed in this article: importance of well-defined security measures in cloud computing and limitations of existing security controls in cloud computing. The findings of well-defined security strategies may benefit DBAs and IT organizations by providing strategies that may prevent future data breaches. Well-defined security strategies may protect an individual’s data which, in turn, may promote individual well-being and build strong communities. Keywords: cloud computing, security strategies, data breaches DOI: 10.7176/JIEA/11-2-05 Publication date: June 30th 202

    Identity Management and Authorization Infrastructure in Secure Mobile Access to Electronic Health Records

    Get PDF
    We live in an age of the mobile paradigm of anytime/anywhere access, as the mobile device is the most ubiquitous device that people now hold. Due to their portability, availability, easy of use, communication, access and sharing of information within various domains and areas of our daily lives, the acceptance and adoption of these devices is still growing. However, due to their potential and raising numbers, mobile devices are a growing target for attackers and, like other technologies, mobile applications are still vulnerable. Health information systems are composed with tools and software to collect, manage, analyze and process medical information (such as electronic health records and personal health records). Therefore, such systems can empower the performance and maintenance of health services, promoting availability, readability, accessibility and data sharing of vital information about a patients overall medical history, between geographic fragmented health services. Quick access to information presents a great importance in the health sector, as it accelerates work processes, resulting in better time utilization. Additionally, it may increase the quality of care. However health information systems store and manage highly sensitive data, which raises serious concerns regarding patients privacy and safety, and may explain the still increasing number of malicious incidents reports within the health domain. Data related to health information systems are highly sensitive and subject to severe legal and regulatory restrictions, that aim to protect the individual rights and privacy of patients. Along side with these legislations, security requirements must be analyzed and measures implemented. Within the necessary security requirements to access health data, secure authentication, identity management and access control are essential to provide adequate means to protect data from unauthorized accesses. However, besides the use of simple authentication models, traditional access control models are commonly based on predefined access policies and roles, and are inflexible. This results in uniform access control decisions through people, different type of devices, environments and situational conditions, and across enterprises, location and time. Although already existent models allow to ensure the needs of the health care systems, they still lack components for dynamicity and privacy protection, which leads to not have desire levels of security and to the patient not to have a full and easy control of his privacy. Within this master thesis, after a deep research and review of the stat of art, was published a novel dynamic access control model, Socio-Technical Risk-Adaptable Access Control modEl (SoTRAACE), which can model the inherent differences and security requirements that are present in this thesis. To do this, SoTRAACE aggregates attributes from various domains to help performing a risk assessment at the moment of the request. The assessment of the risk factors identified in this work is based in a Delphi Study. A set of security experts from various domains were selected, to classify the impact in the risk assessment of each attribute that SoTRAACE aggregates. SoTRAACE was integrated in an architecture with requirements well-founded, and based in the best recommendations and standards (OWASP, NIST 800-53, NIST 800-57), as well based in deep review of the state-of-art. The architecture is further targeted with the essential security analysis and the threat model. As proof of concept, the proposed access control model was implemented within the user-centric architecture, with two mobile prototypes for several types of accesses by patients and healthcare professionals, as well the web servers that handles the access requests, authentication and identity management. The proof of concept shows that the model works as expected, with transparency, assuring privacy and data control to the user without impact for user experience and interaction. It is clear that the model can be extended to other industry domains, and new levels of risks or attributes can be added because it is modular. The architecture also works as expected, assuring secure authentication with multifactor, and secure data share/access based in SoTRAACE decisions. The communication channel that SoTRAACE uses was also protected with a digital certificate. At last, the architecture was tested within different Android versions, tested with static and dynamic analysis and with tests with security tools. Future work includes the integration of health data standards and evaluating the proposed system by collecting users’ opinion after releasing the system to real world.Hoje em dia vivemos em um paradigma móvel de acesso em qualquer lugar/hora, sendo que os dispositivos móveis são a tecnologia mais presente no dia a dia da sociedade. Devido à sua portabilidade, disponibilidade, fácil manuseamento, poder de comunicação, acesso e partilha de informação referentes a várias áreas e domínios das nossas vidas, a aceitação e integração destes dispositivos é cada vez maior. No entanto, devido ao seu potencial e aumento do número de utilizadores, os dispositivos móveis são cada vez mais alvos de ataques, e tal como outras tecnologias, aplicações móveis continuam a ser vulneráveis. Sistemas de informação de saúde são compostos por ferramentas e softwares que permitem recolher, administrar, analisar e processar informação médica (tais como documentos de saúde eletrónicos). Portanto, tais sistemas podem potencializar a performance e a manutenção dos serviços de saúde, promovendo assim a disponibilidade, acessibilidade e a partilha de dados vitais referentes ao registro médico geral dos pacientes, entre serviços e instituições que estão geograficamente fragmentadas. O rápido acesso a informações médicas apresenta uma grande importância para o setor da saúde, dado que acelera os processos de trabalho, resultando assim numa melhor eficiência na utilização do tempo e recursos. Consequentemente haverá uma melhor qualidade de tratamento. Porém os sistemas de informação de saúde armazenam e manuseiam dados bastantes sensíveis, o que levanta sérias preocupações referentes à privacidade e segurança do paciente. Assim se explica o aumento de incidentes maliciosos dentro do domínio da saúde. Os dados de saúde são altamente sensíveis e são sujeitos a severas leis e restrições regulamentares, que pretendem assegurar a proteção dos direitos e privacidade dos pacientes, salvaguardando os seus dados de saúde. Juntamente com estas legislações, requerimentos de segurança devem ser analisados e medidas implementadas. Dentro dos requerimentos necessários para aceder aos dados de saúde, uma autenticação segura, gestão de identidade e controlos de acesso são essenciais para fornecer meios adequados para a proteção de dados contra acessos não autorizados. No entanto, além do uso de modelos simples de autenticação, os modelos tradicionais de controlo de acesso são normalmente baseados em políticas de acesso e cargos pré-definidos, e são inflexíveis. Isto resulta em decisões de controlo de acesso uniformes para diferentes pessoas, tipos de dispositivo, ambientes e condições situacionais, empresas, localizações e diferentes alturas no tempo. Apesar dos modelos existentes permitirem assegurar algumas necessidades dos sistemas de saúde, ainda há escassez de componentes para accesso dinâmico e proteção de privacidade , o que resultam em níveis de segurança não satisfatórios e em o paciente não ter controlo directo e total sobre a sua privacidade e documentos de saúde. Dentro desta tese de mestrado, depois da investigação e revisão intensiva do estado da arte, foi publicado um modelo inovador de controlo de acesso, chamado SoTRAACE, que molda as diferenças de acesso inerentes e requerimentos de segurança presentes nesta tese. Para isto, o SoTRAACE agrega atributos de vários ambientes e domínios que ajudam a executar uma avaliação de riscos, no momento em que os dados são requisitados. A avaliação dos fatores de risco identificados neste trabalho são baseados num estudo de Delphi. Um conjunto de peritos de segurança de vários domínios industriais foram selecionados, para classificar o impacto de cada atributo que o SoTRAACE agrega. O SoTRAACE foi integrado numa arquitectura para acesso a dados médicos, com requerimentos bem fundados, baseados nas melhores normas e recomendações (OWASP, NIST 800-53, NIST 800-57), e em revisões intensivas do estado da arte. Esta arquitectura é posteriormente alvo de uma análise de segurança e modelos de ataque. Como prova deste conceito, o modelo de controlo de acesso proposto é implementado juntamente com uma arquitetura focada no utilizador, com dois protótipos para aplicações móveis, que providênciam vários tipos de acesso de pacientes e profissionais de saúde. A arquitetura é constituída também por servidores web que tratam da gestão de dados, controlo de acesso e autenticação e gestão de identidade. O resultado final mostra que o modelo funciona como esperado, com transparência, assegurando a privacidade e o controlo de dados para o utilizador, sem ter impacto na sua interação e experiência. Consequentemente este modelo pode-se extender para outros setores industriais, e novos níveis de risco ou atributos podem ser adicionados a este mesmo, por ser modular. A arquitetura também funciona como esperado, assegurando uma autenticação segura com multi-fator, acesso e partilha de dados segura baseado em decisões do SoTRAACE. O canal de comunicação que o SoTRAACE usa foi também protegido com um certificado digital. A arquitectura foi testada em diferentes versões de Android, e foi alvo de análise estática, dinâmica e testes com ferramentas de segurança. Para trabalho futuro está planeado a integração de normas de dados de saúde e a avaliação do sistema proposto, através da recolha de opiniões de utilizadores no mundo real

    Towards Secure Identity-Based Cryptosystems for Cloud Computing

    Get PDF
    The convenience provided by cloud computing has led to an increasing trend of many business organizations, government agencies and individual customers to migrate their services and data into cloud environments. However, once clients’ data is migrated to the cloud, the overall security control will be immediately shifted from data owners to the hands of service providers. When data owners decide to use the cloud environment, they rely entirely on third parties to make decisions about their data and, therefore, the main challenge is how to guarantee that the data is accessible by data owners and authorized users only. Remote user authentication to cloud services is traditionally achieved using a combination of ID cards and passwords/PINs while public key infrastructure and symmetric key encryptions are still the most common techniques for enforcing data security despite the missing link between the identity of data owners and the cryptographic keys. Furthermore, the key management in terms of the generation, distribution, and storage are still open challenges to traditional public-key systems. Identity-Based Cryptosystems (IBCs) are new generations of public key encryptions that can potentially solve the problems associated with key distribution in public key infrastructure in addition to providing a clear link between encryption keys and the identities of data owners. In IBCs, the need for pre-distributed keys before any encryption/decryption will be illuminated, which gives a great deal of flexibility required in an environment such as the cloud. Fuzzy identity-based cryptosystems are promising extensions of IBCs that rely on biometric modalities in generating the encryption and decryption keys instead of traditional identities such as email addresses. This thesis argues that the adoption of fuzzy identity-based cryptosystems seems an ideal option to secure cloud computing after addressing a number of vulnerabilities related to user verification, key generation, and key validation stages. The thesis is mainly concerned with enhancing the security and the privacy of fuzzy identity-based cryptosystems by proposing a framework with multiple security layers. The main contributions of the thesis can be summarised as follows. 1. Improving user verification based on using a Challenge-Response Multifactor Biometric Authentication (CR-MFBA) in fuzzy identity-based cryptosystems that reduce the impacts of impersonators attacks. 2. Reducing the dominance of the “trusted authority” in traditional fuzzy identity-based cryptosystems by making the process of generating the decryption keys a cooperative process between the trusted authority server and data owners. This leads to shifting control over the stored encrypted data from the trusted authority to the data owners. 3. Proposing a key-validity method that relies on employing the Shamir Secret Sharing, which also contributes to giving data owners more control over their data. 4. Further improving the control of data owners in fuzzy identity-based cryptosystems by linking the decryption keys parameters with their biometric modalities. 5. Proposing a new asymmetric key exchange protocol based on utilizing the scheme of fuzzy identity-based cryptosystems to shared encrypted data stored on cloud computing

    Security Strategies to Prevent Data Breaches in Infrastructure as a Service Cloud Computing

    Get PDF
    Due to the ever-growing threat of security breaches that information technology (IT) organizations continually face, protecting customer information stored within the cloud is critical to ensuring data integrity. Research shows that new categories of data breaches constantly emerge; thus, security strategies that build trust in consumers and improve system performance are a must. The purpose of this qualitative multiple case study was to explore and analyze the strategies used by database administrators (DBAs) to secure data in a private infrastructure as a service (IaaS) cloud computing. The participants comprised of 6 DBAs from 2 IT companies in Baltimore, Maryland, with experience and knowledge of security strategies to secure data in private IaaS cloud computing. The disruptive innovation theory was the conceptual framework for this study. Data were collected using semistructured interviews and a review of 7 organizational documents. A thematic analysis was used to analyze the data. Four key themes emerged: importance of well-defined security measures in cloud computing, measures to address security controls in cloud computing, limitations of existing security controls in cloud computing, and future and potential security measures solutions in cloud computing. The findings may benefit DBAs and IT organizations by providing strategies to prevent future data breaches. Well-defined security strategies may protect an individual’s data, which in turn may promote individual well-being and build strong communities

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems
    corecore