192,085 research outputs found

    Exponential wealth distribution: a new approach from functional iteration theory

    Full text link
    Exponential distribution is ubiquitous in the framework of multi-agent systems. Usually, it appears as an equilibrium state in the asymptotic time evolution of statistical systems. It has been explained from very different perspectives. In statistical physics, it is obtained from the principle of maximum entropy. In the same context, it can also be derived without any consideration about information theory, only from geometrical arguments under the hypothesis of equiprobability in phase space. Also, several multi-agent economic models based on mappings, with random, deterministic or chaotic interactions, can give rise to the asymptotic appearance of the exponential wealth distribution. An alternative approach to this problem in the framework of iterations in the space of distributions has been recently presented. Concretely, the new iteration given by fn+1(x)=∫∫u+v>xfn(u)fn(v)u+vdudv. f_{n+1}(x) = \int\int_{u+v>x}{f_n(u)f_n(v)\over u+v} dudv.. It is found that the exponential distribution is a stable fixed point of the former functional iteration equation. From this point of view, it is easily understood why the exponential wealth distribution (or by extension, other kind of distributions) is asymptotically obtained in different multi-agent economic models.Comment: 6 pages, 5 figure

    Design and Experimental Validation of a Software-Defined Radio Access Network Testbed with Slicing Support

    Get PDF
    Network slicing is a fundamental feature of 5G systems to partition a single network into a number of segregated logical networks, each optimized for a particular type of service, or dedicated to a particular customer or application. The realization of network slicing is particularly challenging in the Radio Access Network (RAN) part, where multiple slices can be multiplexed over the same radio channel and Radio Resource Management (RRM) functions shall be used to split the cell radio resources and achieve the expected behaviour per slice. In this context, this paper describes the key design and implementation aspects of a Software-Defined RAN (SD-RAN) experimental testbed with slicing support. The testbed has been designed consistently with the slicing capabilities and related management framework established by 3GPP in Release 15. The testbed is used to demonstrate the provisioning of RAN slices (e.g. preparation, commissioning and activation phases) and the operation of the implemented RRM functionality for slice-aware admission control and scheduling
    • …
    corecore