8 research outputs found

    Designing Flexible, Energy Efficient and Secure Wireless Solutions for the Internet of Things

    Full text link
    The Internet of Things (IoT) is an emerging concept where ubiquitous physical objects (things) consisting of sensor, transceiver, processing hardware and software are interconnected via the Internet. The information collected by individual IoT nodes is shared among other often heterogeneous devices and over the Internet. This dissertation presents flexible, energy efficient and secure wireless solutions in the IoT application domain. System design and architecture designs are discussed envisioning a near-future world where wireless communication among heterogeneous IoT devices are seamlessly enabled. Firstly, an energy-autonomous wireless communication system for ultra-small, ultra-low power IoT platforms is presented. To achieve orders of magnitude energy efficiency improvement, a comprehensive system-level framework that jointly optimizes various system parameters is developed. A new synchronization protocol and modulation schemes are specified for energy-scarce ultra-small IoT nodes. The dynamic link adaptation is proposed to guarantee the ultra-small node to always operate in the most energy efficiency mode, given an operating scenario. The outcome is a truly energy-optimized wireless communication system to enable various new applications such as implanted smart-dust devices. Secondly, a configurable Software Defined Radio (SDR) baseband processor is designed and shown to be an efficient platform on which to execute several IoT wireless standards. It is a custom SIMD execution model coupled with a scalar unit and several architectural optimizations: streaming registers, variable bitwidth, dedicated ALUs, and an optimized reduction network. Voltage scaling and clock gating are employed to further reduce the power, with a more than a 100% time margin reserved for reliable operation in the near-threshold region. Two upper bound systems are evaluated. A comprehensive power/area estimation indicates that the overhead of realizing SDR flexibility is insignificant. The benefit of baseband SDR is quantified and evaluated. To further augment the benefits of a flexible baseband solution and to address the security issue of IoT connectivity, a light-weight Galois Field (GF) processor is proposed. This processor enables both energy-efficient block coding and symmetric/asymmetric cryptography kernel processing for a wide range of GF sizes (2^m, m = 2, 3, ..., 233) and arbitrary irreducible polynomials. Program directed connections among primitive GF arithmetic units enable dynamically configured parallelism to efficiently perform either four-way SIMD GF operations, including multiplicative inverse, or a long bit-width GF product in a single cycle. This demonstrates the feasibility of a unified architecture to enable error correction coding flexibility and secure wireless communication in the low power IoT domain.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137164/1/yajchen_1.pd

    Analysis and Design of Energy Efficient Frequency Synthesizers for Wireless Integrated Systems

    Full text link
    Advances in ultra-low power (ULP) circuit technologies are expanding the IoT applications in our daily life. However, wireless connectivity, small form factor and long lifetime are still the key constraints for many envisioned wearable, implantable and maintenance-free monitoring systems to be practically deployed at a large scale. The frequency synthesizer is one of the most power hungry and complicated blocks that not only constraints RF performance but also offers subtle scalability with power as well. Furthermore, the only indispensable off-chip component, the crystal oscillator, is also associated with the frequency synthesizer as a reference. This thesis addresses the above issues by analyzing how phase noise of the LO affect the frequency modulated wireless system in different aspects and how different noise sources in the PLL affect the performance. Several chip prototypes have been demonstrated including: 1) An ULP FSK transmitter with SAR assisted FLL; 2) A ring oscillator based all-digital BLE transmitter utilizing a quarter RF frequency LO and 4X frequency multiplier; and 3) An XO-less BLE transmitter with an RF reference recovery receiver. The first 2 designs deal with noise sources in the PLL loop for ultimate power and cost reduction, while the third design deals with the reference noise outside the PLL and explores a way to replace the XO in ULP wireless edge nodes. And at last, a comprehensive PN theory is proposed as the design guideline.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153420/1/chenxing_1.pd

    Advances in Integrated Circuit Design and Implementation for New Generation of Wireless Transceivers

    Get PDF
    User’s everyday outgrowing demand for high-data and high performance mobile devices pushes industry and researchers into more sophisticated systems to fulfill those expectations. Besides new modulation techniques and new system designs, significant improvement is required in the transceiver building blocks to handle higher data rates with reasonable power efficiency. In this research the challenges and solution to improve the performance of wireless communication transceivers is addressed. The building block that determines the efficiency and battery life of the entire mobile handset is the power amplifier. Modulations with large peak to average power ratio severely degrade efficiency in the conventional fixed-biased power amplifiers (PAs). To address this challenge, a novel PA is proposed with an adaptive load for the PA to improve efficiency. A nonlinearity cancellation technique is also proposed to improve linearity of the PA to satisfy the EVM and ACLR specifications. Ultra wide-band (UWB) systems are attractive due to their ability for high data rate, and low power consumption. In spite of the limitation assigned by the FCC, the coexistence of UWB and NB systems are still an unsolved challenge. One of the systems that is majorly affected by the UWB signal, is the 802.11a system (5 GHz Wi-Fi). A new analog solution is proposed to minimize the interference level caused by the impulse Radio UWB transmitter to nearby narrowband receivers. An efficient 400 Mpulse/s IR-UWB transmitter is implemented that generates an analog UWB pulse with in-band notch that covers the majority of the UWB spectrum. The challenge in receiver (RX) design is the over increasing out of blockers in applications such as cognitive and software defined radios, which are required to tolerate stronger out-of-band (OB) blockers. A novel RX is proposed with a shunt N-path high-Q filter at the LNA input to attenuate OB-blockers. To further improve the linearity, a novel baseband blocker filtering techniques is proposed. A new TIA has been designed to maintain the good linearity performance for blockers at large frequency offsets. As a result, a +22 dBm IIP3 with 3.5 dB NF is achieved. Another challenge in the RX design is the tough NF and linearity requirements for high performance systems such as carrier aggregation. To improve the NF, an extra gain stage is added after the LNA. An N-path high-Q band-pass filter is employed at the LNA output together with baseband blocker filtering technique to attenuate out-of-band blockers and improve the linearity. A noise-cancellation technique based on the frequency translation has been employed to improve the NF. As a result, a 1.8dB NF with +5 dBm IIP3 is achieved. In addition, a new approach has been proposed to reject out of band blockers in carrier aggregation scenarios. The proposed solution also provides carrier to carrier isolation compared to typical solution for carrier aggregation

    A fully integrated 28nm Bluetooth low-energy transmitter with 36% system efficiency at 3dBm

    No full text
    ESSCIRC 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, 14 - 18 September 2015We propose a new transmitter (TX) architecture for ultra-low power radios. An all-digital PLL employs a digitally controlled oscillator with switching current sources to reduce supply voltage and power without sacrificing its phase noise and startup margins. It also reduces 1/f noise allowing the ADPLL, after settling, to reduce its sampling rate or shut it off entirely during direct DCO data modulation. The switching power amplifier integrates its matching network while operating in class-E/F2 to maximally enhance its efficiency. The transmitter is realized in 28nm CMOS and satisfies all metal density and other manufacturing rules. It consumes 3.6 mW/5.5mW while delivering 0 dBm/3dBm RF power in Bluetooth Low-Energy.TSM

    A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm

    No full text
    corecore