5 research outputs found

    ESTUDIO DE LOS METODOS DE SOLUCIÓN PARA SIMULACIÓN EN TIEMPO REAL DE CONVERTIDORES DE POTENCIA. (STUDY OF SOLUTION METHODS FOR REAL-TIME SIMULATION OF POWER CONVERTERS)

    Get PDF
    ResumenEn el presente artículo se muestra el estudio de las técnicas de modelado más utilizadas en la literatura para realizar simulación en tiempo real y su posible posterior uso en un sistema Hardware In the Loop (HIL), aplicado a convertidores de electrónica de potencia.Se explican a detalle cada uno de los métodos más utilizados y la forma de encontrar las ecuaciones asociados a ellos para su posterior programación.Como caso de estudio se seleccionó el convertidor reductor síncrono, mostrando a detalle la solución de este circuito por la técnica de espacio de estados y análisis nodal modificado.Los resultados obtenidos utilizando las técnicas son comparados contra un convertidor simulado en el conocido y aceptado software PSIM.Palabra(s) Clave: Análisis Nodal Modificado (MNA), Espacio de estados, Hardware in the loop (HIL), Modelado, Simulación en tiempo real. AbstractThis article shows the study of the most commonly used modeling techniques in the literature to perform real-time simulation and its possible subsequent use in a Hardware In the Loop (HIL) system, applied to power electronics converters.Each of the most used methods and how to find the equations associated with them for further programming are explained in detail.As a case study, the synchronous buck converter was selected, showing in detail the solution of this circuit by the state space technique and modified nodal analysis.The results obtained using the techniques are compared against a simulated converter in the well-known and accepted PSIM software.Keywords: Hardware in the loop (HIL), Modeling, Modified Nodal Analysis (MNA), Real Time Simulation, State Space

    Opérateurs et engins de calcul en virgule flottante et leur application à la simulation en temps réel sur FPGA

    Get PDF
    RÉSUMÉ La simulation en temps réel des réseaux électriques connaît un vif intérêt industriel, motivé par la réduction substantielle des coûts de développement qu'offre une telle approche de prototypage. Ainsi, la simulation en temps réel permet d'intégrer dans la boucle de la simulation du matériel au fur et à mesure sa conception, permettant du même coup d'en vérifier le bon fonctionnement dans des conditions réalistes. Néanmoins, la simulation en temps réel au moyen de CPU, telle qu'elle a été pensée depuis une quinzaine d'années, souffre de certaines limitations, notamment dans l'atteinte de pas de calcul de l'ordre de quelques micro-secondes, un requis important pour la simulation fidèle des transitoires rapides qu'exigent les convertisseurs de puissance modernes. Pour tenter d'apporter une réponse à ces difficultés, les industriels ont adopté les circuits FPGA pour la réalisation d'engins de calcul dédiés à la simulation rapide des réseaux électriques, ce qui a permis de franchir la barrière de la fréquence de commutation de 5 kHz qui était caractéristique de la simulation sur CPU. La simulation sur FPGA offre à ce titre différents avantages telle que la réduction de la latence de la boucle de simulation du matériel sous test, particulièrement du fait que le FPGA donne un accès direct aux senseurs et aux actuateurs du dispositif en cours de prototypage. Les paradigmes usuels du traitement de signal sur FPGA font qu'il est d'usage d'y opérer une arithmétique à virgule fixe. Ce format des nombres pénalise le temps de développement puisqu'il requiert du concepteur une évaluation complexe de la précision nécessaire pour représenter l'ensemble des variables du modèle mathématique. C'est pourquoi l'arithmétique à virgule flottante suscite un certain intérêt dans la simulation des réseaux sur FPGA. Cependant, les opérateurs en virgule flottante imposent de longues latences, particulièrement handicapantes dans la réalisation de lois d'intégration (trapézoïdale, Euler-arrière, etc.) pour lesquelles l'utilisation d'un accumulateur à un cycle est cruciale. En cela, la problématique de l'addition et de l'accumulation en virgule flottante forme le cœur de notre travail de recherche. Ce travail a permis l'élaboration des architectures d'accumulateurs, de multiplieurs accumulateurs (MAC) et d'opérateurs de produit scalaire (OPS) en virgule flottante, qui joueront un rôle déterminant dans la mise en œuvre de nos engins de calcul pour la simulation des réseaux électriques. Ainsi, le travail présenté dans cette thèse propose différentes contributions scientifiques au domaine de la simulation en temps réel sur FPGA. D'une part, il contribue à la formulation d'un algorithme de sommation qui est une généralisation de la technique d'auto-alignement, nantie ici d'une formulation et d'une réalisation matérielle simplifiées. Le travail établit les critères permettant de garantir la bonne exactitude des résultats, critères que nous avons établis par des démonstrations théoriques et empiriques. La thèse propose également une analyse exhaustive de l'utilisation du format redondant high radix carry-save (HRCS) dans l'addition de mantisses larges, format pour lequel deux nouveaux opérateurs arithmétiques sont proposés: un additionneur endomorphique ainsi qu'un convertisseur HRCS à conventionnel. Une fois l'addition en virgule flottante à un cycle réalisée, la thèse propose de concevoir sur FPGA des engins de calcul exploitant une architecture SIMD (single instruction, multiple data) et disposant de plusieurs MAC ou opérateurs de produit scalaire (OPS) en virgule flottante. Ces opérateurs présentent une latence très courte, permettant l'atteinte de pas de calcul de quelques centaines de nanosecondes dans la simulation de convertisseurs de puissance de moyenne complexité.----------ABSTRACT The real-time simulation of electrical networks gained a vivid industrial interest during recent years, motivated by the substantial development cost reduction that such a prototyping approach can offer. Real-time simulation allows the progressive inclusion of real hardware during its development, allowing its testing under realistic conditions. However, CPU-based simulations suffer from certain limitations such as the difficulty to reach time-steps of a few microsecond, an important challenge brought by modern power converters. Hence, industrial practitioners adopted the FPGA as a platform of choice for the implementation of calculation engines dedicated to the rapid real-time simulation of electrical networks. The reconfigurable technology broke the 5~kHz switching frequency barrier that is characteristic of CPU-based simulations. Moreover, FPGA-based real-time simulation offers many advantages, including the reduced latency of the simulation loop that is obtained thanks to a direct access to sensors and actuators. The fixed-point format is paradigmatic to FPGA-based digital signal processing. However, the format imposes a time penalty in the development process since the designer has to asses the required precision for all model variables. This fact brought an import research effort on the use of the floating-point format for the simulation of electrical networks. One of the main challenges in the use of the floating-point format are the long latencies required by the elementary arithmetic operators, particularly when an adder is used as an accumulator, an important building block for the implementation of integration rules such as the trapezoidal method. Hence, single-cycle floating-point accumulation forms the core of this research work. Our results help building such operators as accumulators, multiply-accumulators (MACs), and dot-product (DP) operators. These operators play a key role in the implementation of the proposed calculation engines. Therefore, this thesis contributes to the realm of FPGA-based real-time simulation in many ways. The research work proposes a new summation algorithm, which is a generalization of the so-called self-alignment technique. The new formulation is broader, simpler in its expression and hardware implementation. Our research helps formulating criteria to guarantee good accuracy, the criteria being established on a theoretical, as well as empirical basis. Moreover, the thesis offers a comprehensive analysis on the use of the redundant high radix carry-save (HRCS) format. The HRCS format is used to perform rapid additions of large mantissas. Two new HRCS operators are also proposed, namely an endomorphic adder and a HRCS to conventional converter. Once the mean to single-cycle accumulation is defined as a combination of the self-alignment technique and the HRCS format, the research focuses on the FPGA implementation of SIMD calculation engines using parallel floating-point MACs or DPs. The proposed operators are characterized by low latencies, allowing the engines to reach very low time-steps. The document finally discusses power electronic circuits modelling, and concludes with the presentation of a versatile calculation engine capable of simulating power converter with arbitrary topologies and up to 24 switches, while achieving time steps below 1 μs and allowing switching frequencies in the range of tens kilohertz

    Modélisation et simulation d'une liaison HVDC de type VSC-MMC

    Get PDF
    RÉSUMÉ Le transport d’énergie en courant continu à haute tension (CCHT ou HVDC) est aujourd’hui en pleine expansion dans le monde. Deux principaux facteurs sont à l’origine de cet engouement. Le premier est lié à la difficulté de construire de nouvelles lignes aériennes pour assurer le développement du réseau à haute tension qui fait que le recours à des câbles souterrains est de plus en plus fréquent. Or l’utilisation de ces câbles est limitée en longueur à quelques dizaines de km à cause du courant capacitif généré par le câble lui-même. Au-delà de cette longueur limite, la solution consiste généralement à transporter en courant continu. Le second facteur est lié au développement de l’éolien offshore qui nécessite de raccorder des puissances de plusieurs centaines de MW au réseau continental au moyen de câbles dont les longueurs peuvent atteindre quelques centaines de km et ce qui nécessite donc le transport en HVDC. De façon concrète, plusieurs projets de transmission HVDC ont été planifiés par le gestionnaire du réseau de transport français RTE. Le projet INELFE, par exemple, est une interconnexion HVDC entre la France et l’Espagne, pour la transmission de 2000 MW. Cette thèse est financée par RTE, dans le but de modéliser, simuler en temps réel et étudier les risques d’interaction entre ces liaisons HVDC. La particularité des ouvrages de transport en courant continu est de faire appel à un contrôle commande dédié qui va en grande partie déterminer le comportement dynamique de la liaison tant sur des grosses perturbations (défauts sur le réseau) qu’en régime de petites variations. Il existe différentes topologies VSC (Voltage Source Converter), comme les convertisseurs à deux niveaux, les convertisseurs multi-niveaux avec des diodes et les convertisseurs multiniveaux avec des condensateurs flottants. Toutefois, en raison de la complexité des commandes et des limites pratiques, les installations de système HVDC-VSC ont été limitées à des convertisseurs à deux niveaux et à trois niveaux. Récemment, la mise au point de la technologie modulaire appelé MMC (Modular Multilevel Converter [Siemens]-[Alstom]) ou CTL (Cascaded Two Level topology [ABB]) en fonction des industriels, a permis de surmonter les limites des autres topologies multi-niveaux pour les applications HVDC. Cette topologie est constituée de plusieurs sous-modules connectés en séries. Chaque sous-module contient deux IGBTs avec leurs diodes antiparallèles et un condensateur qui sert comme accumulateur d’énergie.----------ABSTRACT High-voltage direct current transmission systems (HVDC) are rapidly expanding in the world. Two main factors are responsible for this expansion. The first is related to the difficulty of building new overhead lines to ensure the development of high-voltage AC grids, which makes the usage of underground cables more common. However, the use of such cables is limited in length to a few tens of km because of the capacitive current generated by the cable itself. Beyond this length limit, the solution is usually to transmit in DC. The second factor is related to the development of offshore wind power plants that require connecting powers of several hundred of MW to the mainland grid by cables whose lengths can reach several hundreds of km and consequently require HVDC transmission system. Several HVDC projects are currently planned and developed by the French transmission system operator RTE. One of such projects is the INELFE interconnection project, with a capacity of 2,000 MW, between France and Spain. This thesis has been funded by RTE, in order to model and simulate in off-line and real time modes, modern HVDC interconnections. The delivered simulation means are used to examine targeted HVDC system performances and risks of abnormal interactions with surrounding power systems. The particularity of the INELFE HVDC system is the usage of a dedicated control system that will largely determine the dynamic behaviour of the system for both large disturbances (faults on the network) and small perturbations (power step changes). Various VSC topologies, including the conventional two-level, multi-level diode-clamped and floating capacitor multi-level converters, have been proposed and reported in the literature. However, due to the complexity of controls and practical limitations, the VSC-HVDC system installations have been limited to the two-level and three-level diode-clamped converters. Recently, the development of modular technology called MMC (Modular Multilevel Converter [Siemens] - [Alstom]) or CTL (Cascaded Two Level topology [ABB]) has allowed to overcome existing limitations. This topology consists of several sub-modules connected in series. Each submodule contains two IGBTs with antiparallel diodes and a capacitor that act as energy storage. The control of these IGBTs allows connecting and disconnecting the capacitor on the network

    Fast Simulation of Electromagnetic Transients in Power Systems:Numerical Solvers and their Coupling with the Electromagnetic Time Reversal Process

    Get PDF
    The development of modern and future power systems is associated with the definition of new approaches for their simulation, control, and protection. To give an example, the increasing connection of massive renewable energy conversion systems is justifying the integration of DC infrastructures (eventually, multi-terminal HVDC) in the current AC power grids. Furthermore, the existing passive distribution networks are evolving by integration of decentralized and intermittent generation units which results in Active Distribution Networks (ADNs). As a consequence, complex power system topologies are emerging requiring adequate simulation tools capable to reproduce, possibly in real-time, their dynamic behavior. In this context, future operation/protection practices of power networks might rely on the availability of chip-scale real-time simulators (RTS) that will enable the implementation of efficient protection/fault location processes that, in principle, should be capable to comply with the restrictive constraints associated with these complex systems. Within this context, the work presented in the thesis contributes to the integration of new concepts of the fault location in AC/DC systems that can be deployed in chip-scale real-time simulation hardware represented by Field Programmable Gate Arrays (FPGAs). The development of the proposed fault location platform is done in two steps. First, an original fault location method based on the Electromagnetic Time Reversal (EMTR) theory is proposed. The proposed method is validated for the case of various power networks topologies and its performance is assessed. Compared to the existing fault location methods, the proposed approach is suitably applicable to different topologies including MTDCs and ADNs. Next, a new automated FPGA-based solver for RTS is proposed. The developed FPGA-RTS uses a specific automated procedure to couple the simulation platform with an offline simulation environment (EMTR-RV) without the need for Hardware Description Language (HDL). It is able to simulate both power electronics converters and power system grids and thanks to the use of particular parallel computational algorithms, it can accurately simulate, in real-time, Electromagnetic Transient (EMT) phenomena taking place in power converters and travelling wave propagation along multi-conductor transmission lines within very small simulation time steps (in the order of some hundreds of nanoseconds). To overcome the limitations associated with the Fixed Admittance Matrix Nodal Method (FAMNM), a method to assess the optimal value of the parameter of the Associated Discrete Circuit (ADC) switch model used by FAMNM is proposed. Finally, a specific application of the developed FPGA-RTS is explored for the development of a fault location platform by leveraging the EMTR theory. To this end, the proposed EMTR-based fault location method is integrated with the FPGA-RTS to develop an efficient fault location platform. Thanks to the fast EMT simulation capability of the FPGA-RTS, the developed fault location platform is able to estimate the accurate fault location within very short time scales. Moreover, the developed platform is compatible with the constraints characterizing complex topologies such as MTDC networks (e.g., the ultra-fast operation of the protection systems). The developed fault location platform is validated by making reference to an MTDC grid and an ADN, and it is shown to exhibit remarkable fault location accuracy as well as robustness against uncertainties such as fault type, the presence of noise, measurement systems delay, and fault impedance
    corecore