1,539 research outputs found

    Process Algebras

    Get PDF
    Process Algebras are mathematically rigorous languages with well defined semantics that permit describing and verifying properties of concurrent communicating systems. They can be seen as models of processes, regarded as agents that act and interact continuously with other similar agents and with their common environment. The agents may be real-world objects (even people), or they may be artifacts, embodied perhaps in computer hardware or software systems. Many different approaches (operational, denotational, algebraic) are taken for describing the meaning of processes. However, the operational approach is the reference one. By relying on the so called Structural Operational Semantics (SOS), labelled transition systems are built and composed by using the different operators of the many different process algebras. Behavioral equivalences are used to abstract from unwanted details and identify those systems that react similarly to external experiments

    Focusing in Asynchronous Games

    Get PDF
    Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic

    Probabilistic modal {\mu}-calculus with independent product

    Full text link
    The probabilistic modal {\mu}-calculus is a fixed-point logic designed for expressing properties of probabilistic labeled transition systems (PLTS's). Two equivalent semantics have been studied for this logic, both assigning to each state a value in the interval [0,1] representing the probability that the property expressed by the formula holds at the state. One semantics is denotational and the other is a game semantics, specified in terms of two-player stochastic parity games. A shortcoming of the probabilistic modal {\mu}-calculus is the lack of expressiveness required to encode other important temporal logics for PLTS's such as Probabilistic Computation Tree Logic (PCTL). To address this limitation we extend the logic with a new pair of operators: independent product and coproduct. The resulting logic, called probabilistic modal {\mu}-calculus with independent product, can encode many properties of interest and subsumes the qualitative fragment of PCTL. The main contribution of this paper is the definition of an appropriate game semantics for this extended probabilistic {\mu}-calculus. This relies on the definition of a new class of games which generalize standard two-player stochastic (parity) games by allowing a play to be split into concurrent subplays, each continuing their evolution independently. Our main technical result is the equivalence of the two semantics. The proof is carried out in ZFC set theory extended with Martin's Axiom at an uncountable cardinal

    Quantitative testing semantics for non-interleaving

    Full text link
    This paper presents a non-interleaving denotational semantics for the ?-calculus. The basic idea is to define a notion of test where the outcome is not only whether a given process passes a given test, but also in how many different ways it can pass it. More abstractly, the set of possible outcomes for tests forms a semiring, and the set of process interpretations appears as a module over this semiring, in which basic syntactic constructs are affine operators. This notion of test leads to a trace semantics in which traces are partial orders, in the style of Mazurkiewicz traces, extended with readiness information. Our construction has standard may- and must-testing as special cases

    Observational Equivalence and Full Abstraction in the Symmetric Interaction Combinators

    Full text link
    The symmetric interaction combinators are an equally expressive variant of Lafont's interaction combinators. They are a graph-rewriting model of deterministic computation. We define two notions of observational equivalence for them, analogous to normal form and head normal form equivalence in the lambda-calculus. Then, we prove a full abstraction result for each of the two equivalences. This is obtained by interpreting nets as certain subsets of the Cantor space, called edifices, which play the same role as Boehm trees in the theory of the lambda-calculus
    corecore