64 research outputs found

    A Fully Abstract Denotational Model for Observational Congruence

    Get PDF
    Denotational Model for Observational Congruence Anna Ing olfsd ottir Andrea Schalk BRICS Report Series RS-95-40 ISSN 0909-0878 August 1995 Copyright c fl 1995, BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK - 8000 Aarhus C Denmark Telephone:+45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through WWW and anonymous FTP: http://www.brics.aau.dk/BRICS/ ftp ftp.brics.aau.dk (cd pub/BRICS) A Fully Abstract Denotational Model for Observational Congruence Anna Ing'olfsd'ottir BRICS Dep.of Maths and Computer Science ..

    CPO Models for GSOS Languages - Part I: Compact GSOS Languages

    Get PDF
    In this paper, we present a general way of giving denotational semantics to a class of languages equipped with an operational semantics that fits the GSOS format of Bloom, Istrail and Meyer. The canonical model used for this purpose will be Abramsky's domain of synchronization trees, and the denotational semantics automatically generated by our methods will be guaranteed to be fully abstract with respect to the finitely observable part of the bisimulation preorder. In the process of establishing the full abstraction result, we also obtain several general results on the bisimulation preorder (including a complete axiomatization for it), and give a novel operational interpretation of GSOS languages

    Simulation in the Call-by-Need Lambda-Calculus with Letrec, Case, Constructors, and Seq

    Full text link
    This paper shows equivalence of several versions of applicative similarity and contextual approximation, and hence also of applicative bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seq-operator. LR models an untyped version of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in calculi and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of our similarities and contextual approximation can be shown by Howe's method. Similarity is transferred back to LR on the basis of an inductively defined similarity. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite trees which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, which is also an identity on letrec-free expressions.Comment: 50 pages, 11 figure

    Effectful Applicative Bisimilarity: Monads, Relators, and Howe's Method

    Get PDF
    International audienceWe study Abramsky's applicative bisimilarity abstractly , in the context of call-by-value λ-calculi with algebraic effects. We first of all endow a computational λ-calculus with a monadic operational semantics. We then show how the theory of relators provides precisely what is needed to generalise applicative bisimilarity to such a calculus, and to single out those monads and relators for which applicative bisimilarity is a congruence, thus a sound methodology for program equivalence. This is done by studying Howe's method in the abstract

    Partial orders and fully abstract models for concurrency

    Get PDF
    In this thesis sets of labelled partial orders are employed as fundamental mathematical entities for modelling nondeterministic and concurrent processes thereby obtaining so-called noninterleaving semantics. Based on different closures of sets of labelled partial orders, simple algebraic languages are given denotational models fully abstract w.r.t. corresponding behaviourally motivated equivalences. Some of the equivalences are accompanied by adequate logics and sound axiomatisations of which one is complete
    corecore