3 research outputs found

    Diversity analysis, code design, and tight error rate lower bound for binary joint network-channel coding

    Get PDF
    Joint network-channel codes (JNCC) can improve the performance of communication in wireless networks, by combining, at the physical layer, the channel codes and the network code as an overall error-correcting code. JNCC is increasingly proposed as an alternative to a standard layered construction, such as the OSI-model. The main performance metrics for JNCCs are scalability to larger networks and error rate. The diversity order is one of the most important parameters determining the error rate. The literature on JNCC is growing, but a rigorous diversity analysis is lacking, mainly because of the many degrees of freedom in wireless networks, which makes it very hard to prove general statements on the diversity order. In this article, we consider a network with slowly varying fading point-to-point links, where all sources also act as relay and additional non-source relays may be present. We propose a general structure for JNCCs to be applied in such network. In the relay phase, each relay transmits a linear transform of a set of source codewords. Our main contributions are the proposition of an upper and lower bound on the diversity order, a scalable code design and a new lower bound on the word error rate to assess the performance of the network code. The lower bound on the diversity order is only valid for JNCCs where the relays transform only two source codewords. We then validate this analysis with an example which compares the JNCC performance to that of a standard layered construction. Our numerical results suggest that as networks grow, it is difficult to perform significantly better than a standard layered construction, both on a fundamental level, expressed by the outage probability, as on a practical level, expressed by the word error rate

    Low-Density Graph Codes for slow fading Relay Channels

    Get PDF
    We study Low-Density Parity-Check (LDPC) codes with iterative decoding on block-fading (BF) Relay Channels. We consider two users that employ coded cooperation, a variant of decode-and-forward with a smaller outage probability than the latter. An outage probability analysis for discrete constellations shows that full diversity can be achieved only when the coding rate does not exceed a maximum value that depends on the level of cooperation. We derive a new code structure by extending the previously published full-diversity root-LDPC code, designed for the BF point-to-point channel, to exhibit a rate-compatibility property which is necessary for coded cooperation. We estimate the asymptotic performance through a new density evolution analysis and the word error rate performance is determined for finite length codes. We show that our code construction exhibits near-outage limit performance for all block lengths and for a range of coding rates up to 0.5, which is the highest possible coding rate for two cooperating users.Comment: Accepted for publication in IEEE Transactions on Information Theor

    A full-diversity joint network-channel code construction for cooperative communications

    No full text
    Cooperative communications is a well known technique to yield transmit diversity in a multi-user environment. Network coding can increase the spectral efficiency in networks. These two techniques can be combined to achieve a double diversity order for a maximum coding rate Rc = 2/3 on the Multiple Access Relay Channel (MARC), where two sources share a common relay in their transmission to the destination. However, codes have to be carefully designed to obtain the intrinsic channel diversity. Up till now, no full-diversity capacity achieving code for the MARC at a coding rate Rc = 2/3 has been published. We present a strategy to produce excellent low-density parity-check (LDPC) codes with rate 2/3, i.e., exhibiting full-diversity and operating close to the outage probability limit. Simulation of the word error rate performance of the new proposed family of LDPC codes for the MARC confirms the full-diversity
    corecore