52 research outputs found

    Approaches and possible improvements in the area of multibody dynamics modeling

    Get PDF
    A wide ranging look is taken at issues involved in the dynamic modeling of complex, multibodied orbiting space systems. Capabilities and limitations of two major codes (DISCOS, TREETOPS) are assessed and possible extensions to the CONTOPS software are outlined. In addition, recommendations are made concerning the direction future development should take in order to achieve higher fidelity, more computationally efficient multibody software solutions

    Mechanism test bed. Flexible body model report

    Get PDF
    The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined

    Experiments in cooperative-arm object manipulation with a two-armed free-flying robot

    Get PDF
    Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft

    Precision tethered satellite attitude control

    Get PDF
    Tethered spacecraft possess unique dynamic characteristics which make them advantageous for certain classes of experiments. One use for which tethers are particularly well suited is to provide an isolated platform for spaceborne observatories. The advantages of tethering a pointing platform 1 or 2 km from a space shuttle or space station are that, compared to placing the observatory on the parent spacecraft, vibrational disturbances are attenuated and contamination is eliminated. In practice, all satellites have some requirement on the attitude control of the spacecraft, and tethered satellites are no exception. It has previously been shown that conventional means of performing attitude control for tethered satellites are insufficient for any mission with pointing requirements more stringent than about 1 deg. This is due mainly to the relatively large force applied by the tether to the spacecraft. A particularly effective method of implementing attitude control for tethered satellites is to use this tether tension force to generate control torques by moving the tether attach point relative to the subsatellite center of mass. A demonstration of this attitude control technique on an astrophysical pointing platform has been proposed for a space shuttle flight test project and is referred to as the Kinetic Isolation Tether Experiment (KITE)

    Assessment of hip fracture risk in astronauts exposed to long-term weightlessness

    Get PDF
    Thesis (Ph.D.)--Harvard--Massachusetts Institute of Technology Division of Health Sciences and Technology, 2000."August 1999."Includes bibliographical references.A human exploration mission to Mars could take place within 10 years. During the 6 to 12 month journey astronauts would likely lose bone mineral density (BMD) at a mean rate of 1-2 percent per month in weight-bearing areas, approximately 10 times the rate associated with normal ageing. There exists an important need to quantify the fracture risk associated with this loss. Methods: Using computational modeling, the factor of risk for hip fracture (applied load divided by failure load) was assessed following 0, 6, and 12 months of weightlessness for: 1) the mid-stance phase of gait, and 2) a fall to the side impacting the greater trochanter. Peak applied loading was calculated for Earth and Mars gravity levels using the equations of motion for three-segment models representing locomotion and falls. Mars simulations included extravehicular activity (EVA, with spacesuit) and intravehicular activity (IVA). The structural properties of the femur were analyzed using a three-dimensional finite element model derived from quantitative computed tomography scans of a representative cadaveric femur. Space flight associated changes in density, geometry, and muscle strength were incorporated. Results: Peak applied joint contact force ranges for mid-stance were: 1.2- 2.5 kN (Earth), 0.9-1.8 kN (Mars IVA), and 1.5-2.4 kN (Mars EVA). Peak applied joint contact forces for fall impact were: 4.2-8.0 kN (Earth), 2.7-5.1 kN (Mars IVA), and 3.1-5.0 kN (Mars EVA). Femoral strength in mid-stance decreased from 5.9-6.1 kN (0 months) to 5.1- 5.4 kN (12 months), while femoral strength in fall impact decreased from 4.2-4.4 kN (0 months) to 3.8-4.0 kN (12 months). Typically, the factor of risk for hip fracture was highest for falls in Earth gravity following 12 months of weightlessness (1.12-2.08), and lowest for IVA locomotion in Mars gravity (0.26-0.49). All fall conditions yielded a high likelihood of fracture. Astronauts are advised to take precautions against falling following long duration space flight and could benefit from the temporary use of hip pads.by Grant Schaffner.Ph.D

    Parameterization of a Next Generation In-Vivo Forward Solution Physiological Model of the Human Lower Limb to Simulate and Predict Demographic and Pathology Specific Knee Mechanics

    Get PDF
    The human knee from a mechanical perspective is arguably one of the more complex of the joints of the human body and for this very reason there are a number of pathological factors that can adversely affect knee function, leading to pain, stiffness and an overall reduced quality of life. To rectify these disease conditions, a variety of intervention techniques exist, all of which are predicated on a thorough understanding of the forces and motions that occur at the knee.Various techniques have been developed to further the understanding of how the knee functions; however, many of these strategies involve time and cost consuming processes in order to assess functionality of the knee. Mathematical modeling is a methodology that uses mathematical equations of motion to solve for forces, or in the case of forward modeling, motions given a known set of forces. Such a model is capable of replicating the functionality of the knee in vivo.One application of such a model is in the context of total knee arthroplasty design. Intended for the restoration of functionality after late stage osteoarthritis, total knee arthroplasty devices are highly dependent on their associated design features and the use of a theoretical model affords the opportunity to test the performance of a device without ever needing to manufacture or implant it.In addition, there are also surgical applications where a mathematical model can test joints that otherwise cannot be evaluated under conventional means. This includes modeling of the healthy knee, as well as various functionality-limiting pathological conditions. Perhaps more importantly is the ability to evaluate different intervention techniques to determine the effectiveness in doing so identify which technique most effectively resolves the pathological issues.Advances to the model have focused on parameterization while contributing to a validated normal knee model, an enhancement on the efficiency of the muscles that drive flexion, facilitated methods to evaluate articular geometries and enhancements providing more realistic physiological motions. The model has also been enhanced to account for demographics, as well as abnormal pathology with additional parameters added to better understand gait mechanics at the knee

    Magnetic suspension techniques for precision motion control

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1990.Includes bibliographical references (leaves 256-263).by David Lippincott Trumper.Ph.D

    Determining upper limb kinematics and dynamics during everyday tasks

    Get PDF
    PhD ThesisIn planning orthopaedic procedures or designing joint replacements for the upper limb, detailed knowledge on the kinematic and dynamic behaviour of the shoulder, elbow and wrist joints during the performance of everyday tasks is essential. Previous studies have included kinematic analyses of everyday activities involved in feeding and personal hygiene though none have included both the kinematic and dynamic analyses of these tasks. This study has involved the development, validation and application of experimental methods and analysis techniques, enabling the measurement and modelling of upper limb kinematics and dynamics. A four camera video-based motion analysis system was used to track reflective spheres attached at specific locations on the upper limb and trunk. Novel methods for the definition of the embedded trunk frame and glenohumeral rotation centre were incorporated. Joint attitudes, cadences, angular velocities and angular accelerations were calculated prior to the determination of external forces and moments through the dynamic modelling of the upper limb. The procedures developed have been validated against known measurements and the results of previous studies. These have been applied to obtain kinematic and dynamic data from unimpaired subjects and subjects with shoulder impairment during performance of ten everyday tasks involved in feeding, personal hygiene and the use of everyday objects. Elbow and shoulder flexion were found to be the primary components for the successful completion of the selected tasks. Reaching to the opposite side of the neck was identified as being the most complex of the activities tested in terms of rotation at the shoulder and elbow. Characteristic patterns of motion at the joints of the upper limb were identified during anterior targeted lifting. Differences in performance between the unimpaired and impaired subjects were identified, particularly in the results for cadence and the individual joint velocities and accelerations.Engineering and Physical Sciences Research Council, DePuy Internationa
    corecore