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Abstract

Developing computed-torque controllers for complex manipulator systems using current

techniques and tools is difficult because they address the issues pertinent to simulation,

as opposed to control. This dissertation presents a new formulation of computed-torque

(CT) control that leads to an automated computed-torque robot controller program. This

automated tool is used for simulations and experimental demonstrations of endpoint and

object control from a free-flying robot.

A new computed-torque formulation states the multibody control problem in an elegant,

homogeneous and practical form. A recursive dynamics algorithm is presented that numer-

ically evaluates kinematics and dynamics terms for multibody systems given a topological

description. Manipulators may be free-flying, and may have closed-chain constraints. With

the exception of object squeeze-force control, the algorithm does not deal with actuator

redundancy. The algorithm is used to implement an automated 2D computed-torque dy-

namics and control package that allows joint, endpoint, orientation, momentum and object

squeeze-force control. This package obviates the need for hand-derivation of kinematics

and dynamics, and is used for both simulation and experimental control in the course of

this research.

Endpoint control experiments are performed on a laboratory robot that has two arms to

manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. The

robot's base body mass and inertia are considerably larger than that of the manipulator

arm segments, much like NASA's proposed Orbital Maneuvering Vehicle. Simulations aild

experimental data for endpoint and object controllers are presented for the experimental

robot - a complex dynamic system.

There is a certain rather wide set of conditions under which CT endpoint controllers can

neglect robot base accelerations (but not motions) and achieve comparable performance to

including base accelerations in the model. The regime over which this simplification holds

is explored by simulation and experiment. These simplifications can result in a savings of

an order of magnitude of computation in the controller.

Momentum control via external forces and torques (e.g., thrusters) is provided for in

the formulations, but is not done in this study.
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Civilizationadvancesby extendingthenumberof importantoperationswhich

wecanperformwithout thinkingof them.
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Chapter 1

Introduction

1.1 Motivation

The term Robot, coined by Carl Capek 1, refers to a machine invented to perform repetitive

work. Robots in various incarnations have since been used in industry to replace human

workers in highly repetitive or very dangerous operations, or to extend manufacturing

technologies into regimes beyond human capability.

Advances in robotic manipulation technology continue to extend the capabilities of

manipulator systems, both on earth, and in space. An example of a robotic system that

requires advances in control techniques is NASA's planned Orbital Maneuvering Vehicle

(OMV), a two-armed free-flying robot. It can use its cooperating arms to manipulate

fragile objects, such as spacecraft, with lower applied stresses than if using a single arm.

Multiple arms do, however, increase the complexity of the dynamic system that needs to be

taken into account when designing a manipulator control system. The additional dynamics

introduced by the free-flying nature of the robot further complicate the situation.

Manual derivation by an analyst of such dynamic system equations for control is a

very time-consuming process (and susceptable to error). This thesis develops a unifying

multibody computed-torque controller formulation, and presents a computer prograp: that

uses this formulation to calculate numerical equations for computed-torque control auto-

matically. This program can act both as a design tool for simulation, and as a real-time

I from the Polish verb robot: to work



2 Chapter 1. Introduction

controller, obviating the need for derivation by hand. Thus, simulations and control of

complex dynamic systems such as free-flying robots with cooperating manipulator arms

can be done with relative ease.

1.2 Background

1.2.1 Literature Review

Manipulation from a Free-Flying Robot

Historically, investigation into the control of manipulation from a free-flying robot has

been via the computed-torque method. This method is known to compensate well for

the nonlinearities and time-varying dynamics found in manipulator systems, and has been

verified experimentally by Khatib [15], Craig [6], Khosla and Kanade [16] and others. It has

also been used successfully to control real-world experimental systems by Schneider [29],

Uhlik [33] and other students in the ARL.

Extending the computed-torque control scheme to manipulation from free-flying robots

has not occured without problems, however. The problem of controlling a manipulator

mounted on a free-flying robot exposes a problem in forming and solving a Jacobian matrix

equation: the manipulator Jacobian matrix becomes non-square with a free-flying robot

because the endpoint degrees of freedom combined do not account for all the degrees of

freedom in the system. The so-called 'redundant' degrees of freedom mentioned in the

literature are attributable to the free-flying base, and most of the approaches have come

up with methods to solve for resolved rates or accelerations by removing the extra degrees

of freedom introduced by the base from the formulation. Resolved rates or accelerations

are computed using the system's Jacobian and its derivative as discussed in Craig and

Khatib. The manipulator Jacobian, J is defined by the equation

vendpoints _-- J_

where v is a vector of the speeds of the manipulator endpoints, measured in some coor-

dinate system and _ are the derivatives of the manipulator joint rates and the free-flying

robot's base coordinate rates. In fact, the Jacobian matrix is a generalized derivative, and
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relates many functions' derivatives to a set of independent variables. In the case of robotic

manipulators, the derivatives have been endpoint velocities or angular velocities, and the

independent variables have been the joint rates.

Approaches to dealing with a non-square Jacobian matrix are numerous. Alexander [1]

partitioned the mass matrix and isolated needed additional constraints to compute control

torques. No assumptions were made about momentum, as long as the controller was

informed of changes. Umetani and Yoshida [36] modified the definition of the Jacobian

into a Generalized Jacobian to eliminate the redundant momentum states; subsequent

experimental work [37] illustrated the validity of such an approach. Their resolved-rate

implementation assumed that the angular momentum of the total system was zero.

Masutani et al [41] used the generalized Jacobian to implement a Jacobian-transpose

style controller, and presented simulation results. Woerkom and Guelman [38] used a

generalized inverse to solve the Jacobian equation, with the result that their resolved

accelerations were not consistent with the system dynamics, because they chose to have

resolved accelerations solved using minimization relations that were not consistent with

the system dynamics. Their conclusions from simulation results indicated that this was

not a desirable method.

Carignan [3] used a sliding-mode controller that only partially compensated for manipulator-

body interactions; his experimental results unfortunately demonstrated limitations in the

experimental hardware. He also presented a theoretical formulation for closed-chain kine-

matics using a Lagrangian formulation but did not explore this avenue further.

Vafa and Dubowski [7] defined a Virtual Manipulator as an abstract model of a free-

flying robot with manipulator. This model assumed that external forces and torques were

zero, and that the linear momentum of the system was zero. A simple controller based on

this model was developed in theory; however, it assumed that the robot base is separately

controlled to counteract angular motion.

Koningstein and Ullman [17] presented a method for augmenting the manipulator Jaco-

bian, creating a System Jacobian, in order to solve the control problem for both free-flying

and closed-chain manipulator systems.

None of the methods cited, with the exception of that by the author, have allowed
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momentum to be controlled in the manipulator computed-torque formulation.

One further point: although it has been established that the robot base motions are

affected by manipulator motion, and is also subject to drift due to initial conditions, there

have been no experiments evaluating the relative performance of controllers that include full

free-flying dynamics model versus those that have simplifications. This poses the interesting

question: which aspects of the extra dynamic modeling for free-flying manipulators are

necessary if computation costs are important ?

Cooperative Manipulation

Cooperative manipulation is the act of controlling an object such that all arms work to-

gether, and that the controller resolves the dynamics of the closed-chain constraint. This

has the powerful ramification that the task specification to the controller is in the form of

desired object behavior, and does not concern itself with the activity of the manipulators.

Luh and Zheng [19] formulate the closed-chain constraint for dynamics by differentiating

a position constraint at a cut in the closed chain. This method is also used by Tarn,Yun

and Bejczy [32] to develop a method that allows force control independent of task space.

Hayati [8] explicitly computed the torques and forces required to move an object and

divided them up among the used manipulators, a method also used by Schneider [29], who

performed a series of experiments demonstrating the feasibility of such a scheme.

Carignan and Akin [4] also present a strategy for cooperative control of two arms, but

to carry a load in zero g. The method of Hayati was also derived, albeit in a different

form, by Seraji [30] in order to control force in the constraint directions (eg. the object

squeeze direction) and desired position in the other degrees of freedom. Nakamura et al [40]

derived terms for feedforward control, but not feedback, in an early derivation. Later,

Nakamura and Ghodoussi [20] derived the constrained dynamics equations of motion using

a Langrangian approach.

Typically, descriptions of dynamic systems with constraints are reduced in order (i.e.

rank) for solution. This is because the constrained system has a reduced number of degrees

of freedom, and unique consistent solutions for the joint accelerations require that the

constraints hold. Nielan [21] discusses the cost of formulating constrained equations of
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motion. It involves formulating the unconstrained mass matrix and nonlinear terms, and

the modifying them using matrix operations: an expensive process.

In fact, constrained equations are not necessary in order to control constrained systems

using computed-torque controllers. Hayati and Schneider demonstrated this for simple

dynamic systems. This thesis presents a general method for including the dynamic con-

straints in the Jacobian equation, as opposed to the dynamics equation, so that solving

the Jacobian equation will always result in a consistent set of resolved accelerations. This

conclusively illustrates that it is not necessary to formulate the constrained equations of

motion, regardless of how many dynamic constraints there are in the system, in order to

apply computed-torque control.

Recursive Dynamics Formulations

To study the dynamics and control problem of a physical system, accurate dynamic model-

ing is required. Manipulator dynamics offer interesting challenges because of their nonlin-

earity and coupled nature. Hollerbach [I0] formulated manipulator dynamics recursively

using the Lagrange method. Wampler [39] formulated kinematics and dynamics terms for

manipulators using partial velocities and provided computational cost measures for these

operations. These recursive derivations set the stage for work in automating equation for-

mulations, since it is easiest to implement computer programs that operate recursively.

Recursive algorithms treat each body equally, while noting their relationships to previous

and successive bodies. Thus, computer programs using this approach have but to deal with

one case: a body in a chain of bodies, where conditions depend on the previous body in

the chain.

Computer codes for automatic generation of symbolic equations of motion have ap-

peared, all of them based on Kane's generalized dynamics formulation [13]. Rosenthal's

derivation [27] evolved into SDEXACT, while a similar program called SYMBA was de-

veloped by Nielan [21]. These codes, however, do not address all the needs of the control

system designer since they approach the problem from a simulation viewpoint. They con-

sider the formulation of the dynamics equation, which is useful for simulation and for

the inverse dynamics aspect of computed-torque control, but which does not deal with
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generating resolved accelerations.

Currently, a designer must derive the Jacobian entries by hand, and can then use sym-

bolic manipulation packages (eg. MACSYMA) to factor and compact the solutions for effi-

cient run-time. Using a new tool, AutoLev [28], it is possible to formulate partial velocities

semi-automatically and interactively. Partial velocities have been shown by Wampler [39]

to be useful as entries in a Jacobian equation, while Kane, Nielan and Rosenthal have

shown them to be useful for dynamics formulation.

The inverse dynamics solution does not necessarily involve formulating the mass (iner-

tia) matrix and evaluating the nonlinear terms of the dynamics equations. A significant

amount of computation can be saved by not generating or solving this equation, as has

been demonstrated by Luh, Walker and Paul [18] in their numerical implementation of

recursive Newton-Euler inverse dynamics.

Numeric solutions differ from the symbolic solutions previously discussed as follows:

symbolic programs generate specific computer codes for specific problems, whereas the

recursive numeric methods provide the designer with an algorithm (a fixed program) which

solves the general case.

This approach is the one taken in this thesis, where an algorithm is used to generate

a numerical Jacobian equation, for acceleration resolution, and a recursive Newton-Euler

algorithm to solve for joint torques. Computed-torque control is presented as an algorithmic

process based on recursion using partial velocities.

1.2.2 Key Issues

• There is no single body of theory that neatly describes how to formulate the computed-

torque control problem for a free-flying, cooperating-arm robot.

• Automation tools exist for dynamics simulation but these tools do not address the

formulation of the Jacobian, nor an efficient mechanism for implementing inverse

dynamics. Both are critical to computed-torque control. Control system designers

are therefore faced with complex mathematical derivations in order to formulate

them.

• While automated equation generators exist commercially, none specifically addresses
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the additional work required for computed-torque control, above and beyond that

required for numerical simulation. There is no reason that a Jacobian cannot be

automatically formulated and solved along with the inverse dynamics.

• There has been little experimental work in evaluating the relative performance of

different types of endpoint feedback controllers on free-flying robots, partially due to

the difficulty in formulating controllers for such systems.

1.3 Contributions

The research reported here makes the following original contributions to the fields of

automatic control and robotics:

1. A novel method is developed for dealing with dynamic constraints, such as closed

kinematic chains, in a computed-torque controller by augmenting the Jacobian matrix. As

a consequence, significantly simpler unconstrained dynamics can be used to solve for joint

torques.

2. The addition of linear and angular momentum to the set of quantities that can be

controlled via a computed-torque controller is made possible by augmenting the Jacobian

matrix with partial momenta terms. Previous formulations for free-flying robot controllers

have expected external momentum control, or put restrictions on momentum.

3. A new computed-torque formulation is presented that unifies fundamental compo-

nents of the kinematics, Jacobian, inverse dynamics and forward dynamics in a recursive

algorithm using partial velocities . The formulation of the Jacobian matrix equation re-

quires very little computation with this method.

4. A computer program for two-dimensional recursive dynamics (RD) has been de-

veloped that automatically solves numerically both a Jacobian equation and the inverse

dynamics, given a description of the system topology, the mass distribution, and the desired

control space (i.e., joint, endpoint, momentum). This program is useful for both simula-

tion and real-time control. It obviates the need for manual derivation and coding of the

kinematics, dynamics, Jacobian, and quantities of interest. This algorithm is applicable to

fixed-base and free-flying robots, and also to closed-chain manipulator systems.
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Introduction

Figure 1.1: Two-Armed Free-Flying Robot Model

This experimental autonomous robot, which uses an air bearing, for faith-

ful simulation of zero-gravity in two dimensions, is used to verify the

performance of controllers developed in this thesis.
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5. An experimental free-flying robot with two manipulator arms has been designed

and constructed 2 to act as a testbed for various control systems. This experimental robot,

depicted in Figure 1.1, features an air-cushion for near frictionless 2D behavior, as well

as two low-friction, direct-driven manipulator arms with force sensing grippers. The free-

flying robot model is a completely autonomous system, carrying its own gas for flotation,

batteries for electrical energy, and electronic and computer systems for control.

6. Experiments have demonstrated independent manipulator endpoint position control

and cooperative manipulation of an object from a free-flying robot. Full free-flying multi-

body dynamic models were used. When cooperatively manipulating an object, a point

on the object is position controlled, the object's orientation is controlled, and the squeeze

force exerted on the object is controlled. The computed-torque controller offers decoupled,

linearized control of these otherwise coupled quantities.

7. The effects of simplifying the controller - partially neglecting the free-flying dynam-

ics - are investigated. In particular the simplification of neglecting base accelerations is

examined. When the manipulator arms are articulated in such a way as to isolate them

from base angular motions, and the base body has significantly more mass and inertia

than the manipulator arms, this approximation turns out to be quite reasonable. The

simplification can result in negligible degradation of the endpoint controller's performance,

while reducing the computational burden significantly. Simulation predictions of the effect

of this simplification are made for several robot configurations. Specific examples in sim-

ulation, and two in experiment, serve to illustrate the effects. Experimental data confirm

the validity of this simplification for specific examples of free-flying robot manipulator and

payload under endpoint control.

1.4 Reader's Guide

1.4.1 Outline

This thesis is intended to serve two purposes. The first is to present a new unified computed-

torque formulation and an automated computed-torque controller program as useful tools

2This was a cooperative project with Marc Ullman, also a Ph.D. candidate in the department of Aero-
nautics and Astronautics.
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for continuing research into the control of complex multibody systems. The second is to

provide experimental results demonstrating independent-arm and cooperative-arm manip-

ulation from a free-flying robot. The more general materiM, a rigid-body dynamics and

computed-torque control derivation, is presented first, and then specialized to the system

under study: a two-armed free-flying robot. The second part describes the experimental

setup and presents manipulator endpoint control and cooperative-arm object manipulation

experimental results.

The first chapter has presented the background and motivation behind this research.

Existing work involving free-flying manipulator control, cooperative manipulation, and re-

cursive dynamics formulations are reviewed, and work developed in this thesis has been

introduced. The contributions to knowledge brought about due to this research are de-

scribed, and this reader's guide have been presented.

In chapters 2, 3 and 4, a new underlying formulation developed for computed-torque

(CT) control of rigid-body systems is presented. It applies to fixed-base robots, free-flying

robots, and robots using cooperating arms for manipulation. Chapter 2 contains kinemat-

ics and dynamics modeling and dynamical equations of motion for simulation. Chapter 3

contains the formulation of the computed-torque controller based on the kinematics model-

ing. The augmented Jacobian Matrix, useful for dealing with free-flying and/or constrained

dynamic systems, is introduced at this point. The control algorithm is similar in form, al-

though not in implementation, to standard computed-torque controllers, and encompasses

into one homogeneous, simple formulation most of the work to date on free-flying and

closed-chain systems . In chapter 4 recursive dynamics relations for kinematic chain ma-

nipulators are presented. A recursive algorithm for rigid-body kinematics and dynamics

is implemented for two-dimensional robots. It is used for both computed-torque control

(in simulation and experiment) and for dynamics simulation of multibody systems. This

material is of interest to those studying the structure of dynamics and CT controllers for

manipulators.

In chapter 5 the experimental apparatus, a free-flying robot model, is described. This

free-flying space robot model is used to validate experimentally the CT controller developed

in chapters 2, 3 and 4. The characteristics of the free-flying robot are discussed, and are
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of interest to those interested in the experimental results, since the results are dependent

upon the physical system. Experimental results are discussed in chapters 6 and 7.

In chapter 6 two types of experiments demonstrate control of a two-armed free-flying

robot. In the independent arm endpoint position control experiments, the two arm end-

points are made to follow independent trajectories, in the cooperative manipulation ex-

periment, an object is position and orientation controlled. Squeeze force is also controlled.

The controllers are implemented by the automated recursive dynamics program developed

in chapter 4. The system description files that configured this program to perform these

complex control functions are presented.

In Chapter ? the effects of simplifying the controller on the performance of endpoint

control of free-flying robots is examined. Free-flying dynamic modeling for control is shown

to differ from fixed-base modeling in two aspects: there are accelerations of the base, and

there are extra system states associated with the robot base. Base angular velocity is shown

to compensate for nonlinear terms, and is shown to be computationally inexpensive: it is

included in the model. The effects of neglecting base accelerations, a simplified formula-

tion, are studied. Simulation results show the effects of this simplification for a variety of

base mass (and inertia) values, and a variety of payload masses. Conditions where base

accelerations are important are discussed. Experimental demonstrations similar to those

of chapter 6, but using simplified controllers, are presented.

In Chapter 8 conclusions are drawn from the experimental results and the predictions

of the performance of free-flying robots using simplified controllers that neglect robot base

dynamics. These conclusions are of interest to control designers and persons developing

or designing free-flying robot control systems. Recommendations for future research are

presented for those interested in continuing development of control systems for free-flying

robots.

1.4.2 Notation

The notation employed throughout this thesis is intended to be as consistent as possible

with that developed by Kane [13]. New terms have been introduced to facilitate the

discussion and unify the style of presentation. Their definition and use is also intended to
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be as consistent as possible with Kane's notational conventions. All velocities, momenta,

and accelerations are expressed with respect to a Newtonian (inertial) reference frame.

The basic components of Kane's notation are the generalized coordinates for expressing

position and orientation, and the generalized speeds for expressing motion. Velocities and

accelerations denote the point they refer to. Angular velocities and accelerations denote

the body they refer to. The partial velocities are the components of the velocities that can

be attributed to each generalized speed. Generalized active and inertia forces are used to

express Kane's dynamical equations of motion. Vectors are denoted by bold-face letters,

and scalars by regular face letters. Vectors are 2D or 3D, according to the dimension of

the system under analysis.

qr

Ur

V I

a z

s
v r

o,_3

_3_3

Fr+F; =0

F;

Generalized coordinate r

Generalized speed r

Velocity of point i

Acceleration of point i

Partial velocity r of point i,

Angular velocity of body j

Angular acceleration of body j

Partial angular velocity r of body j,

Kane's Dynamical equations of motion

units of m or tad

units of --_ or s -1

units of
$

units of

effectively _a v i

units of !

units of _

effectively _-o_ J

r=l..n

Generalized Active Force r, corresponding to generalized speed r

Generalized Inertia Force r, corresponding to generalized speed r

- units of _ or _ depending on choice of generalized speeds



Chapter 2

Modeling: Kinematics and

Dynamics

In this chapter kinematics and dynamics relations applicable to both simulation and con-

trol systems of multiple rigid bodies are presented. These relations differ from previous

formulations in the way constrained (i.e. dosed-chain) dynamic systems are modeled. The

relations are applicable to free-flying or fixed robots, and can model a wide variety of dy-

namic constraints. New equations of motion suitable for simulating dosed-chain systems

are presented: these equations automatically ensure state consistency by using relaxation

methods.

First, the assumptions under which the modeling is done are stated. This is followed by

a derivation of genera] multibody kinematics and dynamics expressions, and a treatment

of nonholonomic motion constraints. Expressions for kinetic energy and power input are

presented in appendix A. The terms and equations that fall out of this analysis have useful

structural properties which are used in chapter 4 to automate their formulation.

2.1 Assumptions

This modeling of kinematics and dynamics for simulation and control of multibody systems

is based on the following assumptions:

1. Assume the bodies in the system can be treated as rigid.

13
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2. Assume the controller, which is running at discrete time intervals, is running

fast enough to function as if it were continuous in time.

3. Assume that friction within the dynamic system is negligible.

4. Assume that joint actuators can deliver perfect torques.

The mathematical modeling does not include flexible modes in bodies in the system.

For a control application, if the closed-loop control bandwidth is significantly less than

the bandwidth of the major flexible modes of the system, then the flexibility will not have

a significant effect. The derivations assume continuous time; however, simulations and

experiments use a controller running at discrete time intervals. When CT control systems

are run at greater than ten times their closed-loop bandwidth, they approximate continuous

time.

While friction is not included in the dynamic model, it can frequently be modeled and

compensated for external to the CT control system. Computed-torque control theory per

se does not address the issues of drive-train flexibility nor drive-train friction and backlash.

Uhlik [33], Hollars [9] and others have investigated drive-train flexibility and Pfeffer and

Khatib [23] and Hollars and Tilley [31] demonstrated that friction and backlash effects can

be minimized by using a tight feedback controller wrapped around each joint.

This derivation uses Kane's [13] dynamical analysis concepts, techniques and notational

conventions. A familiarity with this notation, presented at the end of the introduction,

would be beneficial to the interested reader. Basic concepts, such as partial velocities, are

introduced in the derivation as they are required.

2.2 Kinematics

Kinematics is the expression of the velocities and accelerations of points, and the angular

velocities and accelerations of bodies. These quantities are essential for calculating dynam-

ics terms, which are a function of accelerations, and are also required for specification of

constraints (e.g. closed-chain constraints) and desired system behavior for control.
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a

Figure 2.1: Partial Velocities and Generalized Speeds

The choice of generalized speeds (linear combinations of coordinate rates)

determines the partial velocities. In this example, ul = 41, and us = (12.

2.2.1 Velocities

One of the fundamental concepts underlying Kane's dynamics derivation is the relation

between velocities of a point, its partial velocities, and the generalized speeds of the system.

Velocities v of points and angular velocities w of bodies in a system can be expressed

in a Newtonian reference frame as linear combinations of the partial velocities, v r and

o_r. While partial velocities are not exactly 'physical' quantities (they are a function of

definitions made by the analyst), if intelligently chosen, they can have intuitive meaning.

Figure 2.1 shows a two-link manipulator arm with endpoint velocity and partial velocities

marked for the case that the generalized speeds are the derivatives of the joint angles. The

partial velocities of the two points a and b for the two generalized speeds are denoted by

vl, v_, and v_, v_.

In this analysis, it is assumed that the system is not undergoing unalterable motions

due to external forces, hence the partial velocity residuals v t and _t are zero. Therefore
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the partial velocities and velocities are related as follows:

(2.1)
r=l

where v_ is the partial velocity of point i with respect to generalized speed u_.

Once the generalized coordinates and speeds are selected for a dynamic system, the

partial velocities and partial angular velocities for points and bodies in the system may be

determined in the conventional manner. The general methods for determining them is left

to the analyst and is completely general. At this stage of the analysis, no form or structure

of these partial velocities can be, nor is, assumed. It turns out that partial velocities are

very useful vector quantities - they will be used in almost all of the derivations in this

thesis.

2.2.2 Accelerations

Acceleration expressions can be determined by differentiating velocity expressions. For

the purposes of formulating equations of motion the acceleration expressions need to be

sorted into those terms linear in generalized speed derivatives 12, and those not - the

nonlinear terms. Rather than taking the derivative of the velocity expressions directly, it

is advantageous to take the derivative of the partial velocity expressions previously shown

in equation 2.1:

n n

a i = _ i- -i+ vr (2.2)
2.1

r=l r----1

n n

a' = _w_,_ + _&_u_ (2.3)
2.1

r=l r=l

This automatically produces the terms linear in generalized speed derivatives (the first

sum of equations 2.2 and 2.3) separately from those that are nonlinear (the second sum).

An added benefit is that half of the result does not require the taking of derivatives: only

the nonlinear terms require taking derivatives, and then only of partial velocity expressions.

This result is used to formulate equations of motion in section 2.3 and the Jacobian matrix

equation in section 3.2. The complexity of the acceleration expressions and the sorting of

terms can be completely avoided this way.
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2.3 Dynamics

Dynamics is a branch of mechanics that deals with forces and their relation to the motion

of bodies in a system. Dynamic relations are used to formulate the system's equations of

motion, which can be used to simulate system behavior, or help control it. Simulation is

accomplished by solving for accelerations in the system, given a state consisting of position,

orientation and velocity, and given actuator forces and/or torques. Robotic computed-

torque control systems use the equations of motion to solve for actuator forces and/or

torques, given system state and the desired joint accelerations. In this section, the equations

of motion for systems of v bodies are formalized in terms of the linear and angular momenta.

Of particular interest is the way partial velocities and momenta are related, and the effect

of this relation on a general expression for terms in the matrix equations of motion.

It is common to derive unconstrained dynamics expressions first, and then constrain

them as required. This approach will also be followed in this presentation.

Equations of motion for robotic systems are often expressed [6] as

M(1 = V(q, _) + r (2.4)

where the matrix M is refered to as the mass (or inertia) matrix, _ are the second derivatives

of the system coordinates (typically joint angles), V are the nonlinear terms, and r are the

torques (or forces) at the joint actuators.

This analysis will develop a dual of this equation, in which the elements are similar but

more generalized:

Mti = -Nu + F (2.5)

An augmented form for constrained dynamic systems that resolves all the accelerations by

including the constraints C and constraint forces F c is

E cT][ a]IN]C 0 F c = _ uz..n + 0
(2.6)

Both the unconstrained and constrained dynamics simulation equations are highly

structured when built using partial velocities and their derivatives as basic building blocks.
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Velocities, angular velocities, momenta and their derivatives in this derivation are with

respect to a Newtonian reference frame 1.

Kane's [13] dynamics equations

F_+ F;r_7 o0 (2.7)

describe the interaction of the general active forces F_ due to applied forces and torques

and the generalized inertia forces F_ due to accelerations of masses. The generalized active

forces are a function of applied forces FJ and the partial velocities v_* of the point they are

applied at, and the applied torques T k and the partial angular velocities ¢o_ of the body

on which they are applied.

F_ -- _ F j.v_*+ _ T k-_k (2.8)
applied applied

forces j torques k

The generalized inertia forces are a function of the d'Alembert forces FJ* due to accelera-

tions of masses and the partial velocities v_* of their point of action, and the d'Alembert

moments T k* due to angular accelerations of bodies and the partial angular velocities wrk

of those bodies.

r: _- Ft,• + T (2.9)
applied applied

Iorces _ torques k

The generalized inertial forces can be derived from the linear and angular momenta

of the u bodies in the system. First, the terms due to changes in linear momentum will

be examined, then terms due to changes in angular momentum will be examined. The

linear momentum of bodies L i and the angular momentum of bodies Hi� i* about their

mass center i, are expressed with respect to a Newtonian reference frame.

The linear momentum of body i is

L i : mi vi*
Newton

n

= mi E i*2.1 gr _zr

r=l

n

n

=

aThe notation of which has been omitted for clarity.

(2.10)
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where partial linear momenta is defined as

L_ /_= -'* (2.11)2.1o mzVr

The inertia (d'Alembert) force F i_ caused by the acceleration of the center of mass of

body i is:

Fi . _ d Li
Newton dt

n n

EL_u, E'-- _ Ls1_ s
2.11

s=l s=l

(2.12)

Its contribution to the generalized inertia forces is

n n

r'" v;,,,,,7 Ztl '"• v r u, _Li i.. (2.13).... V r Us

s=l s=l

The contribution of the changes in angular momentum will now be examined. The

angular momentum of body i is

H i [_1 Ii/i*toi
tt

= r/.F_,.,_u.
2.'

r----1

n

E i/i* .i_= I tar_ r

r=l

n

= F_n_Ur
r=l

(2.14)

where partial angular momenta is defined as

H_ _= Ii/i'w_ (2.15)
2.1,1

The inertia (d'Alembert) torque T i* caused by the angular acceleration of body i is

Ti. = _dHi
1,31 dt

?'l n

= _E _ii,,,_E Hi,_,
21

s=l J=l

(2.16)

Its contribution to the generalized inertia forces are

Ti. _i = --• _,.,° E n_._,:_, - E Hi,•_,-,'
s=l s=l

(2.17)
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The generalized inertia forces can be then be expressed as

F; =- '" LV r it s q- • V_
2.13,2.17 $

i=1 s=l

- I:I_. co, u, + )"_ H_ • w_a, (2.18)
i=1 s=l

The generalized inertia forces have two components, one of which, F_, is linear in the

derivatives of the generalized speeds.

A F_ + F_F; ,% (2.19)

s=l

n

F_ = - __,nr, u, (2.25)
$----1

The mass matrix, comprised of terms mr., and a nonlinear coupling matrix, comprised

of terms n., can then be used to express the equations of motion of the system as:

MS = -Nu + F
2.18,2.24,2.25,2.5

r = W-1F (2.26)

where the matrix W maps generalized speeds into the derivatives of the generalized coor-

dinates (joint rates).

O_ = EW. u, (2.27)
a=l

(2.24)

These two components can be separated and expressed as

F;M -_ ]_--'_[)'-_Li, vi*_- H_.w_'a,] (2.20)
2.-_9 -- " r $

i=1 s=l a=l

_r A v n "i i* n
2.1L E[E L. "vr u.- EI_I_-w_u,] (2.21)

i=1 a=l s=l

The inertia and momentum scalars which make up the mass matrix M and those that

make up the nonlinear coupling matrix N can then be evaluated as follows:

A
mr "2 lg 2E m v'" i* " i (2.22)- ,. ÷

i=1

n,.sz,_.2E m.-i* i. ii/,,¢o,) ._,.- ,v, .v r + (¢0ix i (2.23)
i=1

The two components F _ and F _ can be expressed in terms of matrix vector products:

n
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The inverse of the matrix W is typically trivial and time-invariant, and depends on

the analyst's choice of generalized speeds. The generalized active force vector F (of Fr)

accounts for the effects of external forces applied to points and torques applied to bodies

in the system:

A . i . T i (2.28)F, E'_I _ v_'Fi+ _ _"
All external All extern_l

forces torques

2.4 Nonholonomic Motion Constraints

In a dynamic system with nonholonomic constraints, the generalized speeds ul..,_ are not

independent, rather, one or more are dependent on the rest. This comes about due to a

motion constraint : velocities or angular velocities are constrained. An example of this is

shown in figure 2.2, where the closed kinematic chMn has fewer degrees of freedom than the

system would have if it were cut. In this section constraint equations will be formulated

and dynamic equations that allow simulation will be presented. The resultant simulation

matrix equation is very simple to formulate and requires no special techniques to solve.

Figure 2.2: A Closed Kinematic Chain

A closed kinematic chain arises when a kinematic chain has closed topo-

logical loops.
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2.4.1 Constraint Equations

Constraints in motion can be one of three types: the velocity v p of a point is zero, the

vP velocity of a point is the same as the velocity vP' of another point, or a velocity is

constrained to some unalterable value 2. This analysis is applicable to systems that have

one or more constraints in linear and/or angular velocity. A velocity constraint is expressed

easily as:

vP -" V p' (2.29)

where vp' = 0 if the velocity vP is constrained to zero. A simple velocity constraint

expression will be formally defined, and then decomposed into a set of equations of the

order of the constraint (2 for 2D systems, 3 for 3D systems). We define a constraint velocity

as:

C p = V p -- V pn

where

(2.30)

cp = 0

These constraint velocities can be expressed using partial velocities as follows:

n n

C p = _ pl
ZVrP'//r ZVr Ur

r=l r=l

rt

=

where partial constraint velocities a are defined as

(2.31)

= p'c_ A v__v r (2.32)

Velocities of points in 3D can be expressed in terms of speeds along some established

inertial x,y and z directions, for example, along inertial unit vectors/¢, _ and _:

n

=

2Such 'Forced motion' constraints introduce partial velocity residuals vz and _t, and are not covered in
this analysis.

SEven although the constraint velocity is zero, the partial constraint velocities axe not.
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n

r----1

n

and express the constraint on generalized speeds 4 as a matrix equation

A
CU = 0

where the elements Csr of the constraint matrix C are:

(2.33)

_ = c_._

c_ = c_.y

_ = c_._

The constraint equation can also be used to express constraints in terms of the deriva-

tives of the generalized speeds. This kind of constraint is useful when solving for these

accelerations in either dynamics simulations or control to guarantee that the system expe-

riences motions (or is commanded to move) in a manner consistent with the constraint:

C_ + (_u = 0 (2.34)

The elements Csr of the derivative of the constraint matrix (_ are simply measures of

the time derivatives of the partial constraint velocities along the inertial basis:

6_ = e_.y

g_ = e_._ (2.35)

The derivatives of the partial constraint velocities are the derivatives of the partial

velocities of constraint's associated points.

,_ d

° pe= 4_-v_

4If u_ -----q_ then this constraint is explicitly on joint rates.

(2.36)
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2.4.2 Constraining the Equations of Motion

In this section the unconstrained equations of motion are modified by the addition of

constraints. These modifications are due to the forces and/or moments introduced by the

constraint, which may or may not be of interest. These forces and/or moments are non-

contributing to the dynamics: they cart be left out of the dynamics simulation equations

because they perform no work on the system. This is evident in Kane's representation of

constrained equations of motion:

_'r + _'_-rffi_.p0 (2.37)

Figure 2.3: A Constraint Force

A constraint Force and/or moment arises out of a motion constraint.

The number of degrees of freedom in this dynamic system are p, where p = n - c from an

unconstrained system that has n degrees of freedom with c constraint equations.

It is instructive to express the constrained equations of motion using the constraints in

order to see just how simply they can he expressed. The simplest way to ensure that the

accelerations in the system are consistent with the constraint is to augment the open-chain

dynamics with the constraint forces and the constraint equations described in the previous
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section. Figure 2.3 shows a typical constraint force due to a motion constraint at point

p. The constraint force of Fp acts on point p, and a corresponding force -Fp acts on the

point f, to which the motion of point p is constrained (a similar case exists in the event

of constraint torques). The constraint forces and torques can be added to the open-chain

dynamics by expressing them as generalized forces.

Fconstraint =
r

Applied

lorce, j

= CTF c
2.33

F j.v_*+ _ T k._
Applied Applied

forces j torqueJ k

Z F+c¢"+ Z Tk +"-- ' " Cp

Applied

torqueJ k

(2.38)

The unconstrainted equations of motion can be modified by the addition of the con-

straint forces and moments and the motion constraint terms, to yield the constrained

equations of motion. The inclusion of c motion constraint equations increases the number

of equations to solve simultaneously from n to n + c.

F c°nstraint + F r + F; = 0 (2.39)

= 0 (2.40)
2.34

In matrix form, the constrained equations of motion can be expressed as follows:

[M+TJ[ In]IN]C 0 F c =+ C Ul.., + 0

This formulation shows that it is possible to solve for both the constraint forces and

the system accelerations simultaneously. Alternatively, it is possible to specify both system

accelerations and internal forces if performing inverse dynamics for control.

2.4.3 Ensuring Constraints Hold in Simulation

One of the problems with dynamic simulations of constrained systems is ensuring con-

sistency in the state. It is generally not possible to start the simulation with a perfectly

consistent state, and initial inconsistencies may grow.



26 Chapter 2. Modeling: Kinematics and Dynamics

While the equations of motion for simulating constrained systems (equation 2.6) ensure

consistent accelerations given a consistent state, they will not correct any inconsistencies

in the state.

It turns out that a simple modification of these equations of motion can take care of

this problem. The constraints can be guaranteed by using a numerical relaxation method.

Consider, for example, a motion constraint between two points, p and/f. It is possible

for a position error of rp - rf to develop, as well as velocity errors of vP - vP'. These

points can be made coincident in space if their accelerations are modified as follows (like a

spring-dashpot arrangement):

aP-aP' = -Kp(r p-r p')-K_(v p-v p') (2.41)

The gain values Kp and K,_ determine the numerical relaxation characteristics, and

should be adapted to the simulation step size. The choice of these gains are similar to

the choice of position and velocity feedback gains in a second-order, discrete-time system

- if they are chosen incorrectly, the simulation can be unstable. A rule of thumb is to

choose them to have a bandwidth w,_ of about 10 times less than the simulation rate, with

a large amount of damping _ = 1..2. To ensure quick convergence to a consistent state at

simulation startup, make the timestep t very small and the gains I(p and I(_ large - then

go to the regular timestep and much lower gains for the rest of the simulation.

2 (2.42)I(p -- wn

2wn

= ---(- (2.43)
The relaxation equation can be recast as

e (2.44)
2.41

and then merged with the constrained equations of motion

C 0 Fc 2.,_._, (_ ul.._ + (e')*

so that a new set of equations of motion arise. These equations of motion for simulation of

dynamic systems with constraints make use of numerical relaxation techniques to ensure

constraints are met. They can be used to remove initial state inconsistencies, or to prevent

the buildup of numerical error.
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2.4.4 Reduced-Order Equations of Motion

Since constraints reduce the number of degrees of freedom in a dynamic system, the equa-

tions of motion are usually expressed in reduced-order form. The procedure for producing

such a reduced-order form from the augmented form of equation 2.6 is presented here. The

disadvantages of using this form, as opposed to the augmented form of equation 2.45 are

discussed as well.

When a system is constrained, generalized speeds are no longer completely independent.

Kane expresses the c constraint equations that arise as:

P

ur = _ A._. + B_ (2.46)
$=1

Where the first p generalized speeds are taken as the independent ones. This analysis

has assumed conditions that result in partial velocity residuals v t to be zero: as a con-

sequence, the Br terms are also zero. The constraining matrix A can be determined by

partitioning the motion constraint matrix into two parts: the first part is c x p and the

second c x c:

C

Cu -

C u C _ul..p + u(n+D., n = 0

u(p+l)..,,

C_×p : C_x c ] (2.47)
cXn

0 (2.48)

(2.49)

= -(co) -' c _ u,.._ (2.50)

The constraining matrix can then be expressed using these two parts:

A = -(CC)-'C u (2.51)

The generalized forces and generalized inertia forces for the nonholonomic system are

T

F r (2.52)

T

F_ (2.53/
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For this simple nonholonomic system possessing p degrees of freedom the reduced mass

matrix, nonlinear terms, and the force distribution matrix are

/Vl = I IM
A A

T

1_/ = I N

A

= W (2.54)
A

In this minimal order system, generalized accelerations can be solved for as follows:

/q..p = 1VI-I(-Nul..n + Vv'r) (2.55)

(2.56)

The disadvantages of using this form (equation 2.55) for simulation, as opposed to the

augmented form (equation 2.45), are the following: (1) a fair amount of computation is

required to reduce the dynamics matrices to minimal order form, and (2) once system

accelerations are solved for, it is still necessary to back out the rest of the state. The

remaining parts of the state can be determined using constraint relations and inverse

kinematics - a complicated and frequently iterative process. This can slow down the

simulation process significantly.

2.5 Summary

In this chapter, kinematics and dynamics relations applicable to systems of rigid bodies

were presented. A new method for formulating equations of motion for simulation of

constrained dynamic systems was presented. These simulation equations (equations 2.45)

ensure that constrained systems converge on a consistent state despite small initial state

errors, via numerical relaxation. The buildup of numerical error ( a violation of constraints)

is also prevented.



Chapter 3

Computed Torque Control

Most commercial robot control systems are based on joint-by-joint position and rate feed-

back (PD) control. In a free-flying robot, however, the manipulator arm joint angles do

not uniquely determine the endpoint position of manipulator endpoints, nor of manipu-

lator end-effector orientation. These positions and orientations are functions of the robot

base's position and orientation as well. It is not possible to specify manipulator endpoint

trajectories in terms of only manipulator joint angles, such as for joint PD control.

Furthermore, cooperating arm manipulators have motion constraints that force angles

and angle rates to be related through constraint relations: specifying inexact angles and rate

to a joint PD controller can result in large tensile or compressive forces on a manipulated

object. The computed-torque (CT) control method, also known as the resolved-acceleration

method is better suited to such systems. ACT controller can compensate for the highly

nonlinear dynamics of a cooperating-arm robot, and allows direct specification of desired

endpoint/object accelerations. Using an endpoint feedback control law with CT control, it

is possible to achieve precise, high-performance manipulator response.

In this chapter the CT control technique is extended to free-flying and constrained

dynamic systems, while maintaining a standard form. This is accomplished by augmenting

the Jacobian matrix with momentum and/or dynamic constraints. In a system that has

dynamic constraints, this formulation allows the use of unconstrained inverse dynamics - a

distinct advantage over current formulations, which require the use of expensive-to-compute

constrained inverse dynamics.

29
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Figure 3.1: Block Diagram of Computed-Torque Control

Decoupling linearized control of highly non-linear systems can be achieved

with an accurate dynamic model. The two major components are the Ja-

cobian section and the inverse dynamics section. Error controllers specify

the desired error dynamics of chosen controlled items. If the full system

state cannot be measured estimators are required.

3.1 Components of a Computed Torque Controller

A basic computed-torque controller, as shown in figure 3.1 consists of seven parts. The

trajectory section provides desired trajectories, which can specify smooth motions, for the

quantities under control. The error controllers, one for each quantity under control, use

knowledge of the system state and a control law to bring errors to zero. The Jacobian

equation translates commands in one space (that of the quantities under control) into

generalized accelerations. The Jacobian matrix needs to be inverted to accomplish this.

The generalized accelerations are derivatives of the system generalized speeds, which can

be chosen by the analyst. They are generally chosen to be the joint angle rates. Once

the generalized accelerations are known, the inverse dynamics process calculates the set of

manipulator joint torques using knowledge of the mass distribution in the dynamic system,
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its state, and the endpoint or internal forces, including internal friction, if modeled. The

computed torques can be delivered directly by the actuators, or via tight torque-control

loops wrapped around each actuator.

The plant - the dynamic system - will then react to these applied torques (and forces).

Chances are the plant is not exactly modeled, so there will be some error. This error is

reduced by closing the loop: feeding back the error between desired and actual motion.

The error controllers rely on knowledge of the current value of the quantities of interest,

commonly provided by sensors. The linearizing and decoupling aspects of computed-torque

control rely on accurate knowledge of the state. Estimators may be necessary to provide

an estimate of full system state if sufficient sensor measurements are not available, or can

provide smoother estimates of system state given an accurate model of the plant and noisy

signals.

This analysis will concern itself with the Jacobian and inverse dynamics: they are

what makes computed-torque control both decoupling and linearizing for highly nonlinear

systems.

There are two equations that implement the Jacobian and the inverse dynamics of

computed-torque control. The Jacobian equation allows specification of desired system

behavior, such as endpoint acceleration, body angular acceleration, joint acceleration, etc.

The inverse dynamics equation uses joint accelerations computed in the first equation to

solve for joint torques.

J-l/ endpolnt _ _)= (ade s --

r = Mq-V(q,_)

In this analysis, a more generalized version of the Jacobian matrix equation will be

derived to allow computed-torque control of complex dynamic systems. This equation

involves the construction of an augmented Jacobian matrix J.

_endpoint 13.33

The solution to this Jacobian matrix equation is used by the generalized version of the

(unconstrained) dynamics equation, developed earlier in section 2.3, to determine the joint



32 Chapter 3. Computed Torque Control

torques.

F = M_+Nu
2.5

r= W-1F
2.26

This chapter has two sections corresponding to these two equations. The first sec-

tion presents a general formulation of the Jacobian matrix and augmentation equations

that extend CT techniques to free-flying robots and dynamically constrained systems such

as cooperative-arm manipulators. The second section will examine the inverse dynamics

matrix equation, particularly in light of using an augmented Jacobian to solve for acceler-

ations.

3.2 The Jacobian Matrix

A basic manipulator Jacobian as described by Craig [6] and Khatib [15] expresses manip-

ulator endpoint speeds measured in a coordinate system as a function of the robot arm

joint angles. In equation form this is expressed as

vendpoints -- j_
[81

where v is a vector of the speeds of the endpoints, and _ axe the derivatives of the manip-

ulator joint angles. This is fine when the number of degrees of freedom of the manipulator

is the same as the number of degrees of freedom of the endpoints: the Jacobian matrix will

be square.

Two cases where this is not so are free-flying manipulators and closed-chain manipu-

lators. Free-flying manipulators have additional degrees of freedom - three in translation

and three in rotation. In closed-chain manipulators such as cooperating-arm systems, the

manipulated body has fewer degrees of freedom than the unconstrained dynamics - but

the same number of degrees of freedom as the constrained system.

In order to use the computed-torque control technique, the Jacobian must be invertible.

It must therefore be square. The process of making a Jacobian square by augmenting it

with additional equations will be presented in this section. This augmented Jacobian will

be depicted as J. It allows specification not only of control in traditional operational space
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(i.e. position, orientation) via J, but also of momentum via OWL and OWHand systems with

dynamic constraints via OWe:

J

OWL

,7 = (3.1)
yH

OWC

The first part of this augmented Jacobian to be examined will be the manipulator end-

point Jacobian J. It will be recast in terms of generalized speeds and formulated with

partial velocities. Next, it will shown that momentum can be controlled via momentum

augmentation equations OWL,OWH. Finally, it will be shown that motion constraints can be

used as augmentation equations OWv so that it is possible to control constrained systems

and use unconstrained inverse dynamics to solve for torques. This new approach to form-

ing an augmented Jacobian Matrix combined with unconstrained inverse dynamics is an

elegant and simple solution to the otherwise complex problem of controlling free-flying or

constrained systems.

3.2.1 Desired Acceleration Specification

A basic Jacobian, as defined by Craig and Khatib, is a matrix that relates manipulator

endpoint velocities to joint rates. This matrix can be inverted in order to solve for joint

rates in terms of endpoint velocities. The resolved-rate control technique uses this approach

to get joint rate commands to joint-rate control systems. Umetani and Yoshida [36] have

demonstrated such a technique on a free-flying robot.

Resolved rate control, however, does not lend itself well to force control, which is

important for cooperative manipulation and other interactions with the environment 1.

Resolved-rate control techniques assume that joint-based control systems can adequately

reduce the dynamic coupling effects.

The basis for the computed-torque (or resolved acceleration) control scheme is to de-

termine the desired joint accelerations from the desired endpoint accelerations using the

l Resolved rate control is computationally somewhat simpler, and can use analog control loops around

joints to control their rates. For a slightly higher cost in computation, resolved acceleration can use analog

control loops around joints to control torques.
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Jacobian. While the analysis presented covers more than just endpoint accelerations, this

first section shows the case where endpoint accelerations are the only control objectives. It

will be shown that the Jacobian can be formulated using partial velocities and inertial basis

vectors. A more generalized manipulator Jacobian expressed using generalized speeds 2 is:

V endp°int "-- Ju
3.7

The endpoint acceleration can then be expressed as:

a endp°int : Ji_ + Ju (3.2)

and the joint accelerations can be solved for by rearranging these equations:

= J-l(aendp°int -- j U) (3.3)/t[6].[151

The Jacobian matrix's components can be formulated using the partial velocities and

partial angular velocities of the endpoint(s) of the manipulator(s) in the system. An

endpoint's velocity, like any point in the dynamic system, can be expressed in terms of its

partial velocities:

n

vendp°int : _ vendp°intu (3.4)
r----1

and therefore 3D endpoint velocity can be expressed in terms of speeds along some estab-

lished inertial unit vectors _, Sr and _:

n

vendp°int " :X : E Vr"endpoint . _ Ur

r----1

n

V endp°int • _r _-- _ Vrendp°int . _r Ur

r=l

n

vendp°int " Z = _ V endp°int " Z Ur (3.5)
3.4 _ r

r----.1

the elements of the Jacobian due to an endpoint's velocity, J, are therefore:

jlr "- _ endpoint_t¢ r

j2r _ endpoint

j3r -" _ endpoint .
3.5 Vt" (3.6)

2If one chooses n -_ q then this is the standard Jacobian. If not, it becomes a more generalized :lacobian.

The theory is valid for either case.
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and the velocity of the point can be determined from the matrix equation

v = Ju (3.7)
3.4,3.6

As shown above, desired endpoint accelerations can be expressed in terms of the Ja-

cobian, its derivative, and the generalized speeds and their derivatives. The derivatives of

the elements of the Jacobian can also be determined from the partial velocities:

lr -.endpoint . :_..- vl"

2r . endpoint

3r ." endpolnt= v. t. ° (3.8)

where the derivatives, taken in a Newtonian reference frame, of the partial velocities are

N
- endpolnt /k d_ vendpoin t (3.9)
v_ = dt -r

These derivatives of partial velocities can be calculated from partial velocities and the

angular velocity of the body (or frame) that the partial velocity vectors are based in.

Endpoint acceleration control specification can be expressed in terms of the Jacobian,

its derivative, and the generalized speeds and their derivatives:

aendp°int = JUl..n + JUl..n
3.7,3.8

This completes the formal description of the Jacobian elements for desired accelerations.

Note that desired angular accelerations can be treated in an identical manner, allowing

body angular acceleration specification.

3.3 Jacobian Augmentation Equations

The Jacobian can be augmented with additional terms in order to cope with more com-

plex manipulator systems. Past research into operational-space (computed-torque) control

has conditioned people to thinking of a Jacobian matrix as something exclusively for deal-

ing with manipulator endpoint velocities and angular velocities. In fact, a Jacobian or

augmented Jacobian matrix 3 can include momentum or motion constraints in the control

3By definition, a Jacobi_n is a generalized derivative. Properly, one should refer to the matrix as an
augmented Jacobian matrix if some of the terms are not strictly derivatives {eg. Angular momentum),
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objectives. Many additional alternative augmentation terms could be conceived: for ex-

ample, handling redundancy. The material covered in this section has been previously

published by the author in [2] and [17].

3.3.1 Momentum Control

If a system $ is free-flying it will possess 6 more degrees of freedom in 3D than when

fixed to the ground, since it is free to translate and rotate. It is not possible to formulate a

square manipulator-endpoint Jacobian for such systems, because the manipulator endpoint

has fewer degrees of freedom than the robot's dynamic system. NASA's envisioned Orbital

Maneuvering Vehicle is an example of such a system. These extra degrees of freedom need

to be dealt with.

Base accelerations of a free-flying robot could be some of the control objectives, and

thrusters could be used to provide necessary impulse to achieve them. This is not an

desirable solution, however: every time a manipulator arm is moved, thruster gas would

be expelled to provide a reaction force. Alternatively, the robot body can absorb these

reactions, particularly if they have zero bias. This methodology makes it possible to control

the manipulator and make minimal use of thrusters.

Alexander [1] has shown that a combination of the Jacobian matrix and a partitioned

mass matrix can result in a solvable system. Constraining equations were taken directly

from the mass matrix to partition and solve an otherwise redundant solution set. This

method was not a viable solution in the general case, however, because dynamic equations

involving mass matrix partitions may contain actuator torques, which are unknowns prior

to solution.

Umetani and Yoshida [36] demonstrated that momentum relations - integrals of equa-

tions of motion - could be used to reduce in rank and solve the redundant system. Another

approach taken to deal with the same problem was the definition of a Virtual Manipula-

tor, by Vafa and Dubowski [7], so that a rederivation of dynamics terms could be made

using knowledge of the linear momentum and the constraint of zero angular momentum.

These formulations either constrain system momenta [7] [36] or require a separate external

momentum control system [1].
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A more general solution to this problem is to allow control of the extra degrees of

freedom introduced by free flight within the scope of the CT controller. For example, it

has already been shown by Ullman [34] that a robot body's position and orientation can

be controlled to follow a trajectory. When dealing with computed-torque, however, it is

possible to have quantities controlled that are linear functions of the generalized speeds of

the system, not just of the coordinates (or rates) themselves. Therefore, the rate of change

of the robot system's linear momentum can be specified: and a trajectory in momentum can

be followed. An experimental demonstration of momentum control was done by Jasper [12],

using a subset of a specific incarnation of the system dynamics equations to calculate joint

accelerations, rather than a Jacobian per se.

This section will formalize the inclusion of momentum and dynamic constraints in the

control objectives of a computed-torque controller. This will be accomplished by augment-

ing the manipulator Jacobian with linear and/or angular momenta equations. Inclusion of

these relations can make a Jacobian full rank, and suitable for computed torque control.

3.3.2 Momentum Equations

First, the linear momentum, then the angular momentum of the system will be examined.

The linear momentum L / of bodies and L 8 of the system are expressed with respect to

a Newtonian reference frame. The angular momentum H i/i* of bodies about their mass

center i, and the angular momentum H s/s" of the system about the system's mass center

S* are expressed with respect to a Newtonian reference frame.

The linear momentum L s of a system of t_ bodies is the sum of the linear momenta of

each body i in the system, and can be expressed in terms of generalized speeds as follows:

L = _ L /
i=l

= E miVi"

i=1

v n

= Zm'Ev '. 
i=1 r----1

t/ n

= ZE ""D2 V r U r

i----1 r----1
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ts n

= _-_ _'-_ L_ur

= L,u, (3.1o/
r=l

where the partial linear momentum Ls of the system of u bodies is defined by

v

LSZX_--_ i ,.= mvr (3.11)
i=1

The partial linear momenta of the system can be formulated using the mass and center-

of-mass partial velocity of each body in the system. The process of building an augmented

Jacobian using these vector quantities is similar to the process used for the partiM velocities

discussed in the previous section, and will be examined after the angular momentum terms

are derived.

The angular momentum Hi/i* of each body i about its center of mass is related to the

body's partial angular momenta H i/i* as follows:

H i = Ii/i*w i
n

= 5--_H_u.
2.15

s=l

The central angular momentum HS/s* of a system of u bodies about the system's center

of mass point S* at position r _m is4:

H s/s" = _"_HI+ _-_(r"-r _'_) x miv i"
i=1 i=1

v

= Z(Ii/i*¢o i -1- (r i* -- r _) X miv i*)

i=1

v n n

• i i*
= _(Y_Ii/i'w'_ur + _-'_Jr i'- r _'_) x m v_ u_)

i=1 r=l r----1

v n

= _ :_'_(H_u_ + (r i* - r cm) × L_ur)
i=1 r=l

= H /S'u, (3.12/
r----1

where the partial angular momentum HSr/s" of the system is defined as

v

H s/s" _ y_(H_ + (r'*-r cm) x L_) (3.13 /
i=1

'See Kane [13] pp69, _6.31
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Jacobian augmentation equations can be set up which describe the relation between

the momenta and the generalized speeds.

Ls = jLu (3.14)

H s/s" = Jttu (3.15)

and

The elements of the Jacobian due to the linear and angular momenta are therefore:

jL = LS.k

j_L = L_.:_

=
3.6

(3.16)

jH = Hs_Is" . k

3:,H = Hs/s " . _,
2r

j x = Hfm'. 
3r 3.8

(3.17)

The partial momenta can be formulated using the partial momenta of bodies, which in

turn can be formulated with the partial velocities in the system. These expressions were

derived in section 2.3.

Desired momentum rates (due to control of external forces and torques) can be ex-

pressed in terms of these Jacobian augmentation equations and their derivatives along

with the generalized speeds and their derivatives.

L s = JLi_ +,_Lu

Hs/s" = jHi_ + jHlt (3.18)

The derivatives of the elements of the augmented Jacobian can be determined from the

partial momenta:

= (3.19)
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and

=

= HS/S..i

= (3.20)

where the derivatives, taken in a Newtonian reference frame, of the partial momenta are:

LS Lx dN Ls
= _

Hs/s" __ _HS/S" (3.21)
- dt r

and the rate of change of the momenta are given by:

_s = y]FeXt_i (3.22)

HS/s" = y]TeXt + _(rCX,_ r*) x F e't (3.23)

This completes the formal description of how to augment the manipulator Jacobian

with partial momenta. Momentum can be included as part of the control objectives of

the CT controller by augmenting the Jacobian matrix with the terms described in equa-

tions 3.16 and 3.17, and the derivative of the Jacobian matrix with the terms described in

equations 3.19 and 3.20. Momentum can be controlled if external forces and torques can

be applied, otherwise, momentum conservation (a momentum rate of 0) can be specified

explicitly.

3.3.3 Control of Constrained Systems

If a system $ has a complete s motion constraint, it will possess 3 fewer degrees of freedom

in 3D than when unconstrained. For example, consider a closed-chain mechanism, such as

a cooperating-arm robot, which is completely constrained in linear motion (and may have

some angular motion constraints as well) at every joint in the chain. Such a chain, if cut,

would have more degrees of freedom.

In a dynamic system with such nonholonomic constraints, the generalized speeds Ul..,

are not independent. Motion constraints define relations that enforce certain relationships

_Invoiving all degrees of freedom in either angular or linear motion
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between rates of motion in the system. This analysis will examine a velocity constraint

introduced when performing cooperating-arm manipulation for the simple case where no

angular-velocity constraints exist. Velocity constraints express the identical motion of

coincident endpoints at any arbitrary cut in the chain. This analysis is applicable to more

than one simultaneous constraint.

The velocity constraint of chain closure, where a point p, the closure point, on a ma-

nipulator is coincident with a point p_ is

vO = v p' (3.24)

In section 2.4.1 a constraint velocity was defined as:

/k
C = V p -- V pt

2.32

-- 0 (3.25)

and the constraint partial velocities 6 evaluated to:

p_
C r = Vr p --V r

2.32

It is evident that by dot multiplication with inertial basis vectors, as was done with

endpoint velocity in the previous section, this vector equation can be reduced to scalar

equations for incorporation into the system Jacobian.

where the elements of these Jacobian augmentation equations are:

_C r = Cr •

g c2r = Cr " Y

C

J3" 2.32,3.6cr" _ (3.26)

These constraint partial velocities can be formulated automatically using the partial

velocities of the points that are touching.

6Although the constraint velocity is zero, the individual constraint partial velocitie_ are non-zero.
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By differentiating the constraint augmentation equations, the acceleration constraints

turn out to be:

0 = ffC_ + ffCu (3.27)

The derivatives of the constraint augmentation equations can also be determined from

the partial velocity derivatives:

)lr ---- 6 r •X

)2r ---_ Cr'Y

J3r = 6 r • Z
3.8

(3.28)

where the derivatives, taken in a Newtonian reference frame, of the constraint partial

velocities are combinations of endpoint partial velocities:

A d
Cr -- Cr

2.3e dt

• * pf
_-- Vrp -- V r

Angular velocity constraints can be derived in an identical manner to linear velocity

constraints, just substitute w for v, and substitute bodies B and B' for points p and p'.

This completes the formal description of how to include dynamic constraints in the con-

trol objectives by augmenting the manipulator Jacobian with partial constraint velocities

described in equation 3.26, and the derivative of the Jacobian with the terms described in

equation 3.28. By augmenting the Jacobian with dynamic constraints, a complete, con-

sistent set of generalized accelerations will be determined when the Jacobian equation is

solved.

3.4 Resolving Generalized Accelerations

Suppose we wish to control a two-armed free-flying robot using cooperating arms to manip-

ulate a payload. The control objectives are not only to control the position and orientation

of the object, but also the linear and angular momentum of the system. Furthermore, a

dynamic constraint (the closed kinematic chain) needs to be accounted for. The control
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objectives are:

aendpoint

aS =Lx _ Ls

_HS/S"

0

An augmented Jacobian J can now be constructed as follows: the manipulator portion

of the Jacobian J relates payload speeds and body angular rates to the the system's gener-

Mized speeds. Augmentation equations describe the system linear and angular momenta:

jL, jn. FinMly, augmentation equations that describe dynamic constraints, jc, are

added if the system has motion constraints. This process results in a full rank T Jacobian

that looks like:

(3.29)

J

jL

J,.,%,

jc
• nxn

This augmented Jacobian describes the relationship between the generalized speeds and

specific quantities in the dynamic system as follows:

v s = jSu (3.30)

vendpoint

I LS
= (3.31)

l HSlS"0

These control objectives enter the Jacobiam equation:

as = Y_ +LTu (3.32)

and the generalized accelerations corresponding to this set of control objectives can be

determined:

t_ = ff-l(-Ju +a s ) (3.33)

7Of rank n, where n is the number of degrees of freedom of the system
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These generalized accelerations (derivatives of the generalized speeds) can be used in

an inverse dynamics routine to calculate manipulator control torques. By augmenting

the manipulator Jacobian matrix with momentum and/or dynamic constraint terms, it is

possible to use conventional CT solution equations. This shows that standard CT solution

techniques are, in fact, applicable to a much larger range of complex dynamic systems.

3.5 Examples of Augmented Jacobian Matrices

In this section several examples are presented of augmented Jacobian matrices for control of

complex dynamic systems. Examples include Jacobian matrices applicable to fixed-base or

free-flying robots with constrained or unconstrained (closed-chain) dynamics. In all cases,

augmenting the manipulator Jacobian makes it full rank, making it invertible (when not

singular), allowing the generalized accelerations to be solved for in the computed-torque

control problem.

A free-flying robot has two arms whose endpoints are designated by pl and p2. The

objectives are to control the positions of these two endpoints using second-order error

control laws. The outputs from the error controllers are desired endpoint accelerations. No

external forces or torques are to be applied to the robot in this phase of it's task: desired

momentum rates are zero. The augmented Jacobian matrix for this 12 th order system,



3.5. Examples of Augmented Jacobian Matrices 45

takingintoaccount the system'slinearand angulax

J

momenta is:

Llz L2z ... Lnx

LI_ L_ L_

Llz L2z Lnz

Hlz H2z Hn_

HI_ H2_ H.u

Hlz H2z Hnz

pl pl a
Vlx V2x VP x

pl pl I
Vly V2y VPny

pl pl 1
Vlz Y2z YnPz

p2 p2 2
Vlx V2x vP x

p2 p2 2
Vll/ V21/ VPy

p2 p2
Vlz V2z VPnz

In order to simplify presentation, a short-form notation

of a vector, such as H i in a matrix implies that all its elements (H i

a column. The Jacobian matrix in equation 3.34 is then

L1 L2 ... LI2

HI H2 H12

pl pl pl
v I v 2 V12

p2 p_ p_
V 1 V 2 V12

(3.34)

it.

J __

12X12

willbe used, where the inclusion

•_)...are presentas

12X12

(3.35)

A fixed-base two-armed robot is to use two arms to grasp an object and manipulate

The objectives are to control the orientation of the object B, and the position of a

point B0 on it. Error controllers provide desired accelerations for these quantities. The

augmented Jacobian for this system to control the acceleration of the point B0, the angular

acceleration of body B, and the constraint at point p (at one of the joints, selected by the

analyst), is:

J ._

o ... v..°
,op.,.2 ,op

nXn

(3.36)
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The inverse dynamics can accept additional information about the internal force at the

point p in order to allow control of the object squeeze force. An example of a free-flying

closed-chain system is presented next.

A free-flying robot is to use two arms to grasp an object and manipulate it. The

objectives are to control a point B* of the object B, the orientation of the object, and

system linear and angular momentum. Error controllers provide desired momentum rates,

desired accelerations of the point B* and desired angular accelerations of body B. The

augmented Jacobian for this system, taking into account the system's linear and angular

momenta and the constraint at point p (a virtual cut at one of the joints, selected by the

analyst) is:

J

L1 L2 ... Ln

H 1 H_ H n

B*_1B. _)B. O)n

nXn

(3.37)

As in the previous example, it is possible to control the object squeeze force by specifying

a desired internal force at the point p.

3.5.1 Summary of Examples

The above examples show that the structure of the Jacobian is very uniform when expressed

using partial velocities, partial momenta and partial constraint velocities. This knowledge

of structure can be used to formulate the entries of the Jacobian matrix automatically,

Chapter 4 discusses a computer program that does this. For example, consider the Jacobian

entries for the velocity of a point: the entries for the Jacobian are the components of the

partial velocities expressed along the inertial _, :_ and _. axes. If these partial velocities are

known, then no additional work need be done in order to determine the Jacobian entries,

their values can be copied directly into the corresponding row(s) of the Jacobian.

3.6 Inverse Dynamics
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Figure 3.2: Inverse and Forward Dynamics

With an accurate dynamics model in the computed-torque controller, the

accelerations in the dynamic system can accurately match those desired.

Inverse dynamics is the process of attempting to 'invert' the plant dynamics so that the

desired generalized accelerations, determined via the Jacobian transformation from the er-

ror controllers, can be achieved by commanding joint torques to the manipulator s . Inverse

dynamics requires accurate knowledge of the system's geometric and mass properties, as

well as knowledge of the full system state. If significant, accurate modeling of friction,

flexibility, and other properties of the system that affect the dynamics, will be required.

Inverse dynamics for both unconstrained and constrained rigid-body systems will be dis-

cussed here.

3.6.1 Unconstrained System Inverse Dynamics

Rigid multibody inverse dynamics can be solved using the generalized dynamics matrix

equation derived in section 2.3: generalized forces, and hence manipulator torques and

forces, can be determined given the desired system generalized accelerations.

F = M6des+Nu
2.5

r = W-1F

SComputed-torques could be fed to tight torque-control loops wrapped around the manipulator joints

in the event that joints are not friction-free.
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where the matrix W maps generalized speeds into the derivatives of the generMized coor-

dinates (joint rates).

n

2.,5

As indicated previously, the inverse of the matrix W is typically trivial and time-

invariant, and depends on the analyst's choice of generalized speeds.

While manipulator torques can be solved using this equation, it is not numerically

efficient: the matrices have n 2 entries, and require re-evaluation at every time step. A

more efficient method for performing inverse dynamics using a recursive algorithm will be

presented in the next chapter, which discusses recursive dynamics as applicable to various

aspects of computed-torque control and dynamics simulation.

3.6.2 Constrained-System Inverse Dynamics: The Hard Way

The dynamics equations get more complex for constrained systems, as was shown in sec-

tion 2.4.4. A reduced-order set of matrix of equations that takes into account the motion

constraints is even more computationally expensive to formulate than the unconstrained

equations described above. First, one needs to determine the constraining matrix:

A = -(Cc)-lc u
2.51

and then one can determine the reduced-order equations of motion.

I N

A

I

A

T

W

From the reduced-order equations of motion the nonholonomic system's generalized

forces _' can be determined as follows:

F1..p -_ _/_Ul..p Jr-iul..n (3.38)

r_Cp×.r_xl = Fp×, (3.39)
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Joint torques, however, cannot be solved for because the matrix Vv" is not full rank. It

is necessary to introduce additional equations, for example extra equations of motion in-

volving internal forces, to resolve the problem. These additional equations can allow a

constraint force (such as an object squeeze force) to be specified. This is a complicated

process: an alternate, simpler method is presented instead.

3.6.3 Constrained-System Inverse Dynamics: An Easier Way

It turns out that if the augmented Jacobian is used to determine generalized accelerations

for the system, then unconstrained dynamic equations can be used to perform inverse

dynamics. This is because the constraint equations embedded in the constrained dynamics

have been taken into account when formulating the augmented Jacobian; the generalized

accelerations provided to the inverse dynamics are already consistent with the motion

constraints.

J

jL

j --

3.1 jH

,jc

= J-I(-Ju + as)
3.33

This simple, powerful, step allows unconstrained inverse dynamics to be applied to any

constrained system that can be modeled with the augmented Jacobian technique: a cate-

gory that includes all closed-chain manipulators. The unconstrained dynamics can include

forces at the endpoints, so that desired internal forces in the manipulator (squeeze force)

can be specified. Unconstrained inverse dynamics can be solved easily with a recursive

Newton-Euler algorithm, to be presented in the next chapter.

3.7 Summary

This chapter introduced and examined two key components of the computed-torque (CT)

control technique: the Jacobian equation, and inverse dynamics. The manipulator Jacobian
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was augmented in order to include linear and angular momentum and dynamic constraints

in the control objectives of free-flying robots.

Inverse dynamics techniques using equations of motion for both constrained and uncon-

strained systems were presented. When using the augmented Jacobian to solve for system

generalized accelerations, it is possible to use unconstrained inverse dynamics - even for

systems with dynamic constraints. The simplified techniques applicable to solving uncon-

strained dynamic systems, such as the recursive technique discussed in the next chapter,

then extend to all constrained systems whose constraints can be expressed as discussed in

section 3.3.3: velocity and/or angular velocity constraints.



Chapter 4

Recursive Dynamics

Most robotic manipulators consist of links connected to one another in a serial manner,

offering many degrees of freedom. This mechanical arrangement, a kinematic chain, has

special properties for dynamic modeling. In this chapter the generalized dynamics expres-

sions derived in chapters 2 and 3 are specialized to this class of robots, kinematic chains,

with recursive relations. Kinematics and dynamics expressions for kinematic chains can be

formulated in terms of local effects and effects due to previous bodies in the chain. This

is applicable to a variety of multi-link robotic manipulators: fixed-base robots, free-flying

robots, multi-armed robots, and robots with cooperating arms.

Three key components of computed-torque control are constructed from recursively

evaluated components. These recursive relations are further specialized to two dimensions

and used to implement an automated computed-torque control computer program (RD).

This program is used in following chapters for simulation and for experimental control of

complex dynamic systems.

4.1 The Kinematic Chain

A kinematic chain is a set of serially connected bodies, where joints between bodies are

revolute and/or prismatic. Bodies are typically connected in a serial fashion such as a

SCARA robot, shown in Figure 4.1. Chains may also have tree-like branches - multiple

manipulator arms - such as SPAR Aerospace's Special Purpose Dextrous Manipulator

51
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Figure 4.1: A Standard Configuration Assembly Robot Arm

The SCARA robot, a widely used type of manipulator, is a simple kine-
matic chain.

(SPDM). Kinematic chains can be fixed-base, such as the robot shown in Figure 4.1, or

they can be free-flying, such as NASA's proposed Orbital Maneuvering Vehicle (OMV).

First, the recursive structure of kinematics and dynamics terms in kinematic chains

will be examined. This is followed by optimizations for the two-dimensional case, so that

the recursive relations can be etficiently implemented in a computer program. A summary

of the capabilities of the RD computer program is presented.

4.2 Computed-Torque Control on Kinematic Chains

In chapter 3, the seven components of a computed-torque controller were shown in figure 3.1

on page 30. Of these seven, three key components: the Jacobian, the inverse dynamics, and

the sensors (a mapping between states and outputs) form the essence of the linearizing,

decoupling computed-torque controller. To recap these three components:

• The Jacobian equation translates control objectives into generalized, possibly joint,

accelerations. The Jacobian matrix needs to be inverted to accomplish this.
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The inverse dynamics section uses these computed generalized accelerations to calcu-

late the required manipulator joint torques using knowledge of the dynamic system.

Compensation torques for nonlinear effects are computed using measurements of the

state: joint positions and angular rates. It is assumed that the computed torques

can be delivered to the links by the actuators directly, or via a tight torque control

loop wrapped around the actuators. If the dynamic model is accurate, these torques

will achieve closely the desired control objectives.

• The sensors provide measurements of quantities of interest, and can be used by the

feedback controllers to achieve desired system response. These signals are typically

functions of the state, such as endpoint position and velocity, rather than a part of

the state.

It has already been shown in chapters 2 and 3 that general kinematics, dynamics

and computed-torque control expressions can be formulated using partial velocities. It

turns out that partial velocities can be easily evaluated in kinematic chains using recursive

techniques. The analyst can choose the system generalized speeds to achieve computation

optimizations.

There is a minimal set of quantities that need to be computed for computed-torque

control using this method. For dynamic terms and/or momentum terms, the partial veloc-

ities and their derivatives of mass center points need to be computed. For Jacobian entries,

the partial velocities and their derivatives of controlled endpoints (or joints, if under joint

control) need to be computed. For simulation signal outputs, the partial velocities and

their derivatives for points of interest need to be computed.

4.3 Recursive Formulation of Kinematic Terms

Recursion:

The determination of a succession of elements (as numbers or functions) by

operation on one or more preceding elements according to a rule or formula

involving a finite number of steps.
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The kinematic chain is ideally suited to recursive techniques. An elementary exami-

nation shows that an endpoint's position and velocity depend on the positioning and mo-

tions of all preceding links. This is applicable to more than just continuous single chains:

branches in the chains are possible (such as with a multi-armed robot). Given a topology

of a dynamic system, the positions and velocities of points on bodies can be expressed

recursively, in terms of the positions and velocities of previous points on bodies along a

chain.

Recursive solutions have been shown to be computationally more efficient than matrix-

oriented solutions by Nielan [21] and Wampler [39], and commercial symbolic dynamics

codes, such as SDEXACT [27] use recursion to formulate their solutions. Recursive tech-

niques are tied to the chain structure that they operate on, the number of operations is

typically on the order of the number of bodies, n, not the number of elements in a matrix

n 2. Matrix elements, needed in simulation equations, can be formulated from recursive

terms when needed. Recursive algorithms for determining kinematic terms, where joints

between bodies are revolute, are presented in this section.

4.3.1 Positions of Points

A recursive relation that describes the position of a point Pi on a link i is

p{ = pO+ r5 (4.1)

where rJ isthe distancefrom the base pointof the linklocatedon the axisA,.(as defined

by the Denavit-Hartenberg convention,or any other)to the point ofinterest.

4.3.2 Velocities of Points

Recursive relations for describing the velocity of a point p{ on a link i, with respect to a

previous link i - 1, are:

o_i = w i-' + qiAi (4.2)

v j = vP; -f w i x r i (4.3)
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Figure 4.2:

qi

A Single Link in a Serial Chain

Velocities of points and angular velocities for any link can be expressed

in terms of conditions at a preceding body, knowing the connection point

pO, the axis _, and the joint angular speed.

4.3.3 Partial Velocities

Velocity relations can be broken down into their partial velocity components. Partial

velocities are used in this thesis to construct the kinematic and dynamic terms used in

computed-torque control and dynamic simulation. Their recursion relations are:

1%

wri = m_-I + iiZWr,u, (4.4)

vP_ P' i r i (4.5)---- Vr J _Lco r X

where the matrix W is the map between generalized coordinate rates and generalized

speeds. It is dependent on the analyst's definition of the generalized speeds. The choice of

generalized speeds is arbitrary, but must ensure that the matrix W is invertible. A common

choice of generalized speeds for 3D systems and a good choice of generalized speeds for 2D

systems, that yields a very simple formulation, are discussed next.
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4.3.4 Choice of Generalized Speeds

The partial angular velocities, used to determine partial velocities along a chain, are very

dependent on the definitions of the generalized speeds. The generalized speeds and the

coordinate rates are linearly related via the equation

n

2.27

+I----I

In 3D systems, the generalized speeds are typically chosen to be the derivatives of the

A
generalized coordinates: ur = +r. The map W is then:

W = I,×,_ (4.6)

and the relation between the partial angular velocities along the chain (from start to end)

is:

i for r < i

¢.Or

i
oar = "_i for r = i (4.7)

0 for r >i

In 2D systems, a good choice for the generalized speeds are the measures of the angular

velocities about the $ axis: ur ----coi. $. This choice results in fewer calculations to evaluate

terms in the kinematics and dynamics expressions. This is particularly evident in the

simplified form of the partial angular velocity terms, equation 4.9, and partial velocity

terms, equation 4.31: most evaluate to zero, or are constant over a set. The _. axis is

perpendicular to the plane of motion.

The map between generalized coordinate rates and generalized speeds is then:

W __.

1 0 0 ... 0

-1 1 0 ... 0

0 -1 1 0 ...

0 0 -1 1 etc.
nxn

(4.8)

and the relation between the partial angular velocities along the chain (from start to end)

is:

I"
i | $ for r = i

0 for r ¢ i
(4.9)
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Since most of the partial angular velocities are zero, this choice of generalized speeds can be

used to simplify greatly and to speed up the formulation (and computation) of kinematic

terms. These optimizations, possible with 2D systems, are explored further in section 4.5.

4.3.5 Accelerations of Points

The recursive relation for describing the angular acceleration of body _i with respect to

the angular acceleration of the previous link ai-1 is:

a i = a ix i (4.10)

(4.11)

• i

The recursive relation for describing the acceleration of a point a p_ on a link i, with respect
0

to the acceleration of a point on the joint with the previous link aP_, is:

aP; _- a p° %aP_/°

= ap_ + ¢_i X r i + _oi x ¢oi x ri (4.12)

Itwas shown in section2.2.2that accelerationscould be factoredintoterms involving

the partialvelocities,the generalizedaccelerations,the derivativesof the partialvelocities,

and the generalized speeds:

n n

2.2
r=l r----1

n n

r=l r=l

The recursive formulation of partial velocities has already been discussed, the formulation

of the derivative of the partial velocities is discussed next•

4.3.6 Derivatives of Partial Velocities

The derivatives of partial velocities can be formulated recursively using the following rela-

tion

n n

• i -i-, AiEW,a_, +w { X A/EWrau_ (4.13)O3 r -- O$ r -_-

s_l s=l

•P_ P' •i ri (4.14)
,I.4
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4.4 Application to Computed-Torque Control

4.4.1 Jacobian Equation Elements

The Jacobian equation, used to solve for desired system generalized accelerations given

control objectives, is:

= y-_(-,_u + as)
3.33

The augmented Jacobian can be used to express endpoint velocities, body angular rates,

linear and angular momentum, and dynamic constraints in terms of the generalized speeds.

The discussion in sections 3.2 and 3.3 showed how to formulate Jacobian matrix entries on

a row-by-row basis, according to the control objectives.

The rows of the Jacobian matrix are the partial velocities and/or the partial momenta.

So once these are determined they can be used as-is in the Jacobian.

4.4.2 Recursive Inverse Dynamics

Figure 4.3: Inverse Dynamics on a Link-by-Link Basis



4.4. Application to Computed-Torque Control 59

Many computed torque control schemes use the following matrix equation to compute the

joint torques:

Mq= V(q, dl) + r

Nielan [21] showed that O(n 2) computations are required to solve this equation. The mass

matrix and nonlinear terms of the system need to be evaluated in order to solve for the

control torques. Using these equations of motion to solve the inverse dynamics equation is

numerically inefficient.

Robot forward dynamics have been solved by Rosenthal [26], Rodriguez [25] and others

in O(n) computations. Luh, Walker and Paul [18] solved inverse dynamics equations for

control torques in O(n) computations using a recursive Newton-Euler algorithm. In this

section a similar straightforward algorithm is used to solve the inverse dynamics for the

actuator torques along a serial chain. This algorithm consists of two phases: Solving for

system accelerations on an outward pass, and solving for forces and torques on an inward

pass.

Outward Recursion

In the first part of the algorithm, the accelerations are propagated out from the base of

the robot to the end(s) of the kinematic chain(s). Accelerations at the base of the robot

are known: either they are zero, or, in the event that the robot is free-flying, they are the

derivatives of the generalized speeds for its linear motion. Other generalized speeds can be

used to describe the free-flying robot body's angular motion. A free-flying robot base is

effectively the first link in the chain.

The joint accelerations (derived from system generalized accelerations) are used to

determine the accelerations of points and angular accelerations of successive bodies in the

system. The accelerations of all the relevant points on a body, including that of the center of

mass points, will need to be evaluated for each body in the chain. All other accelerations in

the system can be determined using the base accelerations and the link recursion relations.

The link recursion relation for acceleration at the end of a link states it is related to the

acceleration at the start of a rigid body link as follows:

a end = a staxt + a link X r start to end + _hnk X W link X r start to end (4.15)
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Accelerations of center-of-mass points of the link need to be computed in order to

evaluate the d'Alembert forces on the backwards sweep of the recursion:

ai" ---- a "tart Jr a link X ri_ -t-u_link X o.,link X r i" (4.16)

where the following components are derived as follows:

a _ = a _-1 + OiAi+ qi_ _ × A;
4.10

where the axis direction Ai is a positive rotation, in a right handed sense, for qi. The link

angular velocity o: i and its angular acceleration a i are updated at each step along the

A .
chain. For example, in 3D systems where the generalized speeds are defined as u_ = qr,

the update will be

0._i = 0._i-1 q- _iUi

a _ = a _-1 + AiiLi+'i X AiU_

whereas, for 2D systems where the generalized speeds are defined as u_

will be

(4.17)

(4.18)

A=wi ._., the update

w i = Aiui (4.19)

oti = Ai/ti (4.20)

Repeat this process, computing link angular velocity and acceleration, center of mass

accelerations and link end accelerations, until these accelerations have been computed all

the way out to the end(s) of the chain(s).

Inward l_cursion

The second part of the algorithm propagates the forces and moments back from the end(s)

of the chain(s), computing joint torques along the way. Forces and moments at the end

of the chains are known: when the arm when is not in contact with anything, they are

zero, when the arm is in contact with another part of the dynamic system, this force is

an internal force, calculated from knowledge of the masses, inertias and accelerations of

the body with which it is in contact, as well as an extra degree of freedom in force - a
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squeeze force 1. Closed kinematic chains have such an internal force (a squeeze force), on

every body in the chain. When dealing with constrained dynamic systems, the algorithm

traverses each of the chains up to the virtual cuts imposed by the analyst.

Start by taking moments about the joint at the start of the link, and attribute the

component along the joint's axis Ai to that joint's actuator. The moments due to the

center of mass acceleration and the link's angular acceleration are easily evaluated given

its mass properties.

T i _ Tlink end + rstart to end X F end - r start to * X _rtia i*

The joint motor torque can then be evaluated.

n = -T;-Ai

The moments on the inboard body (to which this link is connected) are then:

T _-_ = T i - 2riAi

(4.21)

(4.22)

(4.23)

and likewise, the sum of the forces exerted on the inboard body at the connection point

F enos-' = _--_F end_ - mia i" (4.24)

are:

The focus can now be shifted to the next link in, where this process can be repeated

until all of the control torques have been determined. If linear actuators are being used,

then the actuator force solution can be done using the sum of forces along the actuator

axis.

This Newton-Euler algorithm for solving for the joint control torques (or forces) is

straightforward and easily implemented. If the robot has two or more arms, the solution

for the joint torques for the various arms can be done in parallel.

4.5 Recursive Dynamics (RD) in Two Dimensions

Several opportunities to optimize computations arise when considering two-dimensional

dynamic systems. Combined with the structure inherent in kinematic chains, this results

1The squeeze force is equal to the subtraction of two forces exerted on a body: it does no work.
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in some significant simplifications in the formulations of terms. The derivation of kinematics

and dynamics presented here first deals with the simple case of a single fixed-base kinematic

chain. After this, the modifications applicable to free-flying systems and more complex

branching chain structures are discussed.

4.5.1 Kinematics for Planar Serial Link Manipulators

In particular, all the angular velocities are along the _. axis, which allows the definition of

the generalized speeds in a manner that makes the equations of motion easier to express:

A _)iu; = • _ (4.25)

This definition allows angular velocities to be expressed as a function of only one gen-

eralized speed: and facilitates the derivations of many terms.

In a system consisting of a set of i planar serially connected rigid links has a simple

relationship relating link endpoint velocities to link basepoint velocities:

vendp°int _-- V basep°int "Jc _link X r basep°int to endpoint (4.26)

if this is expressed using partial velocities,

_endpoint . basepoint 0Jrlink rbasepoint to endpoint (4.27)r = vr -J- ×

If we define unit vector xi to be along the link, from basepoint to endpoint, and unit

vector _i to be perpendicular to xi and in the plane of the manipulator, then we can define

_, a unit vector perpendicular to the plane of the manipulator as:

A
$ = _i x :_ (4.28)

The generalized speeds 1..n and the angular velocities are related as follows:

wli_ i = ui_ (4.29)
4.2.5

and the endpoint to basepoint velocity relation for link i of length l_ becomes:

r.tart to end i = li :_i (4.30)
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and the partial velocity relations along the chain from start i = 1 to end n, are as follows:

¢
i = ] _" fori=r

w_ _9 _ 0 fori_r

{ v_ t_rti fori=l...r-1
v'_ndi = li_'i for i = r (4.31)

0 fori = r+ 1...n

The partial velocities of the mass center of each link are calculated using:

rStaxt to end i ---- l_ x i (4.32)

^, ^= xi x y_ (4.33)

V* = V basep°int q- 03 link X r basep°int to endpoint (4.34)

then, if expressed using partial velocities,

V_ _ basepolnt -- link rbasepoint to endpoint= v r -1- t.0 r X

v starti for i = 1 .r-- 1

--r ° °

i*
Vr = li_ri for i = r

0 fori= r+ 1...n

(4.35)

(4.36)

These partial velocities can be used to formulate the Jacobian matrix equation, and

can also be used for the recursive Newton-Euler inverse dynamics, as discussed earlier in

this chapter.

4.5.2 Equations of Motion for Planar Serial Link Manipulators

The formulation of the equations of motion (mass matrix and nonlinear terms) for a kine-

matic chain with no branches: a highly simplifiable system, are presented in the this

subsection to illustrate the technique. The kinematic chain has u bodies, and n degrees

of freedom. When no motion constraints are present, the number of degrees of freedom is

equal to the number of articulated bodies in the chain. The contribution of body i to the

inertia scalar m_a, an element of the mass matrix M, can be determined as follows:

(m_,)i m i i. " i. ii/i. i, (4.37)= v r "vts*q-w r • "6as
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for the planar system, this reduces to

• _ Vr • V s(m,.)' = Ebony, i mi '" '"
/ • i* Ti/i*Zbodi_,i mi v" . v,, + -z_

where

for s_ r
(4.38)

forn=r=s

and

ii/i. = _. ii/i..
Z2 (4.39)

_linki --_ UiZ (4.40)

A complete inertia scalar can be built from the sum of the effects of all bodies:

mr8

case r = s = j

mjj

case r ¢ s, k = max (r, s)

f/_rs

D.tl. 1. 1. /2Vr2* V2* ...= v r • v s + • +

= m j v_''vi ° + mJv_ j+l)* " 0+1)*• .j + •..

= mj (lj.)2 d- mJ+lv_ -ndj • vj'endi -{- .. •

= m j (lJ') 2

-b (mJ+l + m j+3 +'' ")V; nd_" V_ ndi

m k lJ*_ • vr"start k

endk . endk
+ (mk+l-{ - ink+2+ ...)Vj Vj

A similar derivation for the nonlinear terms is:

(4.41)

• • i* i I:I i(nrs) i=m iv_.*.v s +W r. (4.42)

where

;* I_Ii 0 (4.43)0,) r •

In the planar configuration, no torques due to changes in orientation of the angular

momentum vectors of bodies occur.
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A new term representing outboard mass, m;, is defined as

roT°= mk+l + mk+2+..- + mn (4.44)

where

k =max(r,s) (4.45)

The inertia and momentumscMarsfor the mass and nonlinear coupling terms matrices are

then:

* nd n end n (4.46)mrs = mrs V e • V a

.end n+m k (t*kyT,)•vr

and if j = r = s

+mS(b.) 2

T.//J*
--ZZ

similarly, the expression for the nonlinear coupling term matrix scalars is:

ifs>r

ifr>s

m: s .vrend n. _send n (4.47)

[l* ^ _x • elld 11+ mk UkYk) vr

_mk (l.k_.kuk) v_nd n

4.5.3 Modifications for Free-Flying Dynamic Systems

If a system is free-flying then it is necessary to introduce 2 extra linear velocity degrees of

freedom and one extra angular velocity degree of freedom. It is typical to introduce these

at the body considered as the 'base' of the robot, and let the rotational degree of freedom

make the body itself act as a rotational link. It changes the formulations discussed in

the sense that body numbers i and generalized speed numbers r are no longer the same:

r=i+2.
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4.5.4 Modifications for Branching Chain Structures

If kinematic chains have branches, it becomes necessary to take each branch into account

when evaluating the kinematic and dynamic terms. The body numbers i and generalized

speed numbers r will no longer be the same. The recursion rules must be considered in

light of ordering along the chain rather than explicit sequence indices i and i- 1.

4.6 Implementation of an Automated

Control System

Computed-Torque

4.6.1 Motivation: Dynamical System Configurations

In a system consisting of a set of connected bodies, every change in configuration results

in different dynamic characteristics. These changes may be due to the addition or removal

of bodies, or constraints of motion bodies may place on each other. In mathematical

terms, each of these configurations has it's own set 2 of equations of motion that can be

used to predict motions of the system. In the problem under study, a free-flying robot

with two arms and a payload, the robot-payload system can be in various configurations.

The configurations of interest in this research are the following two: (1) both arms are

operating independently and (2) both arms are grasping a payload. Many additional

variations including the robot gripping onto a rigid object with one arm, and gripping a

fixed object with one or more arms, are also possible, as is an object with flexible dynamic

properties.

The problem with having multiple configurations is that distinct sets of computed-

torque control equations need to be derived and implemented. Manual derivation is not a

desirable solution3; it requires significant amounts of the analyst's time and is inherently

susceptable to error. The dynamic system under study, a dual-arm satellite manipulator

model, is essentially a serial chain of rigid bodies that undergoes only minor changes (in

terms of structure) when it grasps an object: chains become longer, or become closed.

The equations of motion of a chain system have a certain form as discussed previously in

2Actually, many sets, but they axe equivalent.

3The author derived the equations of motion for the case of the 2D free-flying robot with two two-llnk

arms (no payload, no constraints) using Kane's method in 30 pages.
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this chapter, and the addition of extra links to the system are consistent with this form,

although a different set of equations of motion does result. Rederiving the system equations

of motion for each new configuration can be avoided by evaluating the terms of equations

of motion and control numerically at run-time using algorithms based on the recursive

structure of the kinematics.

4.6.2 The RD Automated Computed-Torque Control Computer Program

The RD computer program implements the two dimensional recursive kinematics and dy-

namics algorithms, and takes advantage of the simplifications available in 2D. A partial

listing of the computer code is presented in appendix C. The RD computer program con-

structs and evaluates computed-torque controllers and dynamics simulation equations for

rigid-body manipulators with revolute joints from specifications of the masses and inertias

of the bodies in the chain as well as their interconnections.

The computer code for the recursive kinematics implements equations 4.1, 4.2, 4.3 to

determine positions and velocities on outwards recursions along the kinematic chains. The

partial velocities are evaluated according to the rules set forth in equations 4.9 and 4.31.

The computer code for the recursive inverse dynamics implements equations 4.15 through

4.24.

The Jacobian matrix and its derivative are formulated using equations 3.6 and 3.8, for

ordinary endpoint specifications, equations 3.16, 3.19, for linear momentum specifications,

equations 3.17, 3.20 for angular momentum specifications, and equations 3.26 and 3.28 for

dynamic constraints.

The simulation code makes use of equation 2.5 or equation 2.6, depending on whether

or not dynamic constraints exist in the system. The elements of the mass matrix and the

nonlinear terms are evaluated using equations 4.46 and 4.44.

Commented listings for the kinematics and inverse dynamics computer code are pre-

sented in appendix C.
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4.6.3 Aspects of the Recursive Dynamics Program

This program addresses several issues present in the computed-torque control and simula-

tion of rigid multibody systems. In particular, the dynamic system needs to be defined, the

signal inputs and outputs need to be defined, and the control objectives need to be defined.

When these items are defined, it is possible both to control and simulate the dynamics of a

rigid multibody system. The RD program needs to be given a system description computer

file prior to use. This system description file consists of five parts: a description of the

dynamic system, a description of input and output signals-of-interest (such as positions

and velocities and some forces), a description of accelerations of interest, and a description

of the control objectives. Comments may be placed in the file, if preceded by a %, in

order to increase legibility. Two samples of configuration files are included below: one for a

free-flying robot with one two-link arm. Another configures RD to control and/or simulate

a two-armed fixed-base robot doing cooperative manipulation.

Multibody Dynamics

The first component of the configuration setup file is the description of the multibody sys-

tem. The syntax uses a start token 'DynamicSystem' and end token 'EndDynamicSystem'

to demarcate this section.

A system can be either free-flying or fixed-base, depending on whether the first body

is designated as 'FreeFlying' or a 'Body' attached to the 'Inertial' frame at some location.

The bodies present in the system are described by their names, where they attach to a

previous body, the location of their center-of-mass, their mass and inertia about their

center-of-mass. The revolute joints connecting bodies can be named.

Endpoints can be defined and named for future reference in the signals-of-interest,

accelerations-of-interest, or control sections. Manipulated bodies can be defined similarly

to other bodies, except the have two special properties: they have two connection points to

previously defined bodies in the system, and they are eligible to be squeeze-force controlled

in the control objectives section. The placement of an object in the system causes ttD to

automatically generate the constraints necessary in the Jacobian, and/or automatically

solve the augmented constrained equations of motion.
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Signal Inputs

This component of the configuration setup file is optional: the description of input signals-

of-interest. The syntax uses a start token 'Inputs' and end token 'EndInputs' to demarcate

this section.

Inputs can consist of positions, velocities and forces. Inputs are used by RD to substi-

tute its estimate of quantities with measured values, allowing RD to accurately infer these

quantities further out along the robot manipulator. For example, measured positions can

be used to yield a better estimate of grasped object position than kinematically infered

position starting from the base of a robot. RD allows the substitution of measured position

or velocity values anywhere along a chain. Measured forces can be used to determine the

squeeze force on an object from real data.

Signal Outputs

This component of the configuration setup file is optional: the description of output signals-

of-interest. The syntax uses a start token 'Outputs' and end token 'EndOutputs' to de-

marcate this section.

Outputs can consist of positions, velocities and forces. Outputs are computed by RD in

the course of performing kinematics. The ability to have RD compute positions and ve-

locities of arbitrary points in the system (they must have been previously named) allows

any kinematically relevant signal to be observed by an external program. It can be used

to observe positions or velocities of unmeasured points, or the squeeze force on an object.

Acceleration Outputs

This component of the configuration setup file is optional: the description of dynamic

signals-of-interest. The syntax uses a start token 'DynamicOutputs' and end token 'End-

DynamicOutputs' to demarcate this section.

The dynamic outputs are evaluated in the process of doing inverse dynamics for computed-

torque, or when doing numeric simulations using the equations of motion. Accelerations

of points and angular accelerations of bodies can be observed.
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Control Objectives

This component of the configuration setup file, the description of the control objectives, is

necessary when computed-torque control is to be done. If only simulation is to be done,

this component need not be included. The syntax uses a start token 'Control' and end

token 'EndControl' to demarcate this section.

The control objectives can include accelerations of (previously named) points, angular

acceleration of bodies, system momentum, and object squeeze force. RD wiU check to

ensure that su_cient control objectives have been defined for the order of the system - to

make sure the resultant dacobian matrix is square. If this is not true, an error message

will be printed.

4.6.4 Sample System Description Files

The following two files describe a free-flying robot with a two-link arm, and a fixed-base

robot using cooperating arms to the RD program. The sections of this file, covered in the

previous paragraphs, serve to describe not only a dynamical system, but the computed-

torque control system, measurement update points and points of interest in the system.

This file describes a free-flying robot with one two-link arm.

Z Sample Configuration File for lid

Z One-armed, Free-Flying Robot under Endpoint and Momentum Control

Z Dynamic Systam Description (all units in SI - kg, m, s)

DynamicSyst em

FreeFlyingBody "Robot Body" Z Body of Robot

0.0 0.05 Z center-of-mass offset in local frame x,y in •

10.0 Z mtss of base in kg

3.2 _ Izz inertia of base in kg-m 2

Body

lttached£t

JointType

0.059 -0.002

1.92

0.02

"Upper £rm" Z Upper ira

0.1842 -0.1842 _ joint attachment point in •

Bevolute "Shoulder"

Z center of mass location of upper arm inn

Z :ass of ara in kg

Izz inertia of upper arm about center o_ mass in kgl 2
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Body

Att achedAt

JointType

0.20 0.0

0.34

0.012

"Lower Am" % Lover Arm

0.30 0.0 % Joint attaclment point 4n •

Itevolnte "Right Elbos"

% center of aass location of fore arn

% mass of fore arm

% Izz inertia of fore arm about cm

Endpo Ant

Attachedlt

"Endpo int"

0.30 0.0 % endpoint attachment point in •

EndDynamicSystma

% These quantities are of interest to the error controllers

%

Outputs

Position "Endpoint °'

Velocity "Endpoint"

EndDutputs

%

% These accelerations are of interest to the analyst

%

DynamicOutputs

Acceleration "Endpolnt"

EndOutputs

% These are the set of control objectives

%

Control

LinearNo_entum

_LlarMomentum

Acceleration "Endpoint"

EndControl

This file describes a fixed-base cooperating arm robot. Note that the closed-chain

constraint is automatically computed and solved once the points of closure are defined on

the object. The tightness of the numerical relaxation of this constraint is set at run time

- see the matlab code in appendix D.

% Sample ConYiguration File for RD

% Two-armed, Fixed-Base Robot eith Object Control

% Dynamic System Description (all units in SI - kg, m, s)

%
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DynmaicSyst m.

Chain

Body

AttachedAt

J o int Type

0.5 0.0

5.0

0.1

"C" _ Upper Risht ire

0.0 -O.S _ location of arm 1 base (in inertial space)

Revelers "Right Shoulder"

center of mass location of upper arm

mass of upper arm

Z Izz inertia of uppwr arm about ca

Body

£ttachedJt

JointType

0.20 0.0

4.0

O. 08

"D" Z Loser Right Ire

0.6 0.0 _ joint attachment point

Reveler e "Bight nbow"

center of mass location of fore arm

nan of fore arm

Izz inertia of fore arm about ca

Endpoint

£ttached£t

EndChain

"Bight Endpoint"

0.6 0.0 _ endpoint attachment point

Chain

Body

AttechodAt

JointType

O.S 0.0

5.0

0.1

"E" _ Upper Left Arm

0.0 0.5 _ location of arm 2 base

Revolute "Left Shoulder"

center of mass location of upper arm

Z mass of upper arn

Z Izz inertia of upper arm about ca

Body

£ttachedAt

JointType

0.20 0.0

4.0

0.08

"F" _ Lower Left £rm

0.6 0.0 Z joint attaclment point

Revo3nte "Left Elbow"

center of mass location of fore arm

mass of fore arn

Izz inertia of fore arn about cm

"Left Kndpoint"

0.6 0.0 _ endpoint attachment point

Object "Object"Z Manipulated Object

Attachedat 0,6 0.0 _ gripper port 1

0.0 0.2 Z center of mass location of object

12.0 Z mass of object
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0.2

Constraint

0.5 0.0

Zzz inertia of object about ca

"Right gndpo int"

constrained endpoint

gndpo Jut

AttachedAt

gndChain

object'e center

EndDynmaic$ystem

These qututitiea are set to meas_Lrment8 at the appropriate place in the dynamic

Inputs

Position

Position

Force

Force

EndOutputs

"Right Endpoint"

"Left Endpoint"

"Right Endpoint"

"Left Endpoint"

These quantities are of interest to the error controllers

Outputs

Position

Velocity

Position

Velocity

SqueezeForce

EndOutpute

"Right Endpo int"

"Right _dpoint"

"Loft Endpoint"

"Loft Endpoint"

"Object"

Z These are the set of control objectives

Control

Acceleration "Object Point"

LOglLlarAcceleration "Object"

F_dControl

4.6.5 Computational Cost

Table 4.1 shows the computational cost in floating-point operations 4 involved in the l_D computed-

torque controller. The computational cost of solving the system's Jacobian matrix equation

4Addition, subtraction, division and multiplication each count as one operation.
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is high because it involves solving an equation of the form

Anxn Xnxl -- bn×l (4.48)

The solution of this matrix equation for the vector z involves O(n 3) floating-point opera-

tions. The solution of this equation is the most computationally intensive component of

the computed-torque control technique.

]] Kinematics: Operations in Setup

Linear Momentum Setup 4(n-2)

Angular Momentum Setup 13(n-2)

Kinematics: Operations per Link

Free-Flying Base 26

Basic Manipulator Link 20

Endpoint 18

Manipulated Object 36

Linear Momentum 28

Angular Momentum 6+8k

System Jacobian Solution

Solution to Jacobian Equation (. n 3 + 2n 2 - n)

Inverse Dynamics: Operations per Link

Free-Flying Base 19

Basic Manipulator Link 21

Endpoint 10

Manipulated Object 29

For each branch in chain II 3

Table 4.1: Number of Floating-Point Operations in RD

computed-torque control

There are n bodies in the system. Note that the computations for angular

momentum involve information from the previous k links in the chain.

4.6.6 RDImplementation Limits

The implementation of R,D used in this research is limited to 10 degrees of freedom in order

to keep the memory requirements of the program low. Keeping this limit low also has a

slight impact on RD's speed of operation. This limit was not exceeded by the dynamic

systems investigated in this thesis.
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4.6.7 Verification of Correctness

The correctness of the algorithm for dynamics modeling was confirmed in two ways: by

checking the conservation of the system's Hamiltonian and by comparison to results of

SDEXACT [26] simulations.

A self-check can be made by observing the energy of the system over a simulation run.

Also, as time step size is decreased, the variation of energy over time decreases in greater

proportion.

4.7 Summary

The special properties of kinematic chains have been used to formulate recursive equations

useful for performing computed-torque control and also for performing dynamic simulation.

These recursive equations have been implemented in a computer program, RD, that can

be used to simulate the motions of a system of rigid bodies, and it may also be used to

do computed-torque control. A simple system description file is all that is needed to start

investigating the dynamics of systems of multiple rigid bodies.
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Chapter 5

Experimental Hardware

This chapter discusses the robot used to perform the experimental work described in chap-

ter 6 and 7. The requirements that the experimental free-flying robot model had to meet

in order to be a viable experimental platform are discussed. An overview of the robot's

mechanical, electrical and computer system components is presented.

5.1 System Requirements

The central control problems being studied in this research are (1) independent manipulator

endpoint control, and (2) cooperative manipulation of an object from a free-flying robot. In

order to model a real space robot accurately, this experimental space robot model must have

various characteristics in common with it. The experimental robot should be free-flying,

with negligible external forces and torques, it should have multiple manipulator arms, and

it should be able to use its arms cooperatively to manipulate a free-flying payload. In

order that the model developed for control and simulation is applicable, it is also necessary

that the robot not have flexibility in the links or drive train anywhere near that of the

bandwidth of the control system. Friction effects in the drive-train and base motion have

been made as small as possible.

This experimental apparatus was designed 1 so as to model realistically a free-flying

robot, such as NASA's proposed Orbital Maneuvering Vehicle. This free-flying robot model

1The design was undertaken by Marc Unman and the author, with help from Gad Shelef in the design
and fabrication of the manipulator arms.
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is used to test control algorithms developed in this research project, and is expected to be

used in future research.

5.2 Design Approach

A modular design approach, allowing rapid disassembly, repair, modification, and reassem-

bly, was taken. Modularity offers not only ease of use for our generation of experiments,

but allows simpler upgrade paths to be taken for the needs of future researchers. New sub-

systems can be added or older technology items (particularly computers) can be replaced

as the state-of-the-art improves. The space robot model was designed to be autonomous

in order to model faithfully the dynamics of a space-borne free-flying robot. Self-conta_ned

systems for power, sensing and computing allow the model robot to function without cum-

bersome tethers to the outside world.

5.3 Robot System Overview

The robot model used in the experiments was designed to be able to function autonomously,

such that it may perform manipulation and navigation tasks with the same kind of freedoms

enjoyed by a true space-based robot. The robot is fully self-contained, carrying its own

pressurized air for flotation and thrust (although no thrust is used in these experiments,

it is intended for use in others), batteries for electrical power, two manipulator arms for

catching and positioning payloads, and analog electronics for sensing and actuation, as well

as an on-board computer for the control software. All these subsystems fit into the robot,

which measures 500 mm in diameter and 800 mm in height. The free-flying satellite robot

model with two manipulator arms is shown in figure 5.1. Various components making up

this robot model will be discussed in the following sections.

It is possible to see, from the top down, the computer layer, the analog electronics

layer, the pressurized gas layer for flotation and thrusters, and the manipulator arms with

endpoint grippers. The base of the robot masses 50 kg, and has an inertia about its center

of mass of 3.2 kg-m 2. Each of the arms mass 2.2 kg. The mass distribution in the robot

system is presented in detail in table 5.1.
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Figure 5.1: Satellite Robot Model

The Satellite robot model is a fully autonomous system, with on-board

compressed air for propulsion and flotation, on-board batteries for power,

and an on-board computer for controllers.
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BLACK AND WHITE PHOTOGRAPFi

Figure 5.2: Granite Surface Plate

This 9 foot x 12 foot granite surface plate affords a large area workspace

on which to perform experiments.

5.4 Air-Bearing

The experimental robot requires the existence of a very-low-friction bearing for faithful

simulation of the drag-free space environment. Previous research by Alexander {1] has

found air bearings to be ideally suited to these needs. The principals of operation of

this type of bearing are discussed by Alexander [1] and Rehsteiner [24]. The air bearing is

formed by a laminar flow of air forced outward between two smooth, flat surfaces. The lower

surface of the bearing is a large granite surface plate. The plate is a rigid, dimensionally

controlled surface that can tolerate a heavy robot and not bend. Figure 5.2 shows a picture

of the granite surface plate used in this research project.

The upper surface of the bearing is a 20 inch diameter, 1/16 inch aluminum plate

bonded to a piece of 1 inch Hexcel in order to give it stiffness, and then lapped in order to

make it smooth and fiat. The operation of this air bearing - showing air flow, is shown in

figure 5.4. The thickness of the air bearing measured was approximately 2 thousandths of

inch at a feed pressure of approximately 1 psi. This is not a critical figure: higher pressures
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Figure 5.3: Pressurized Gas Layer

Contains three gas pressure vessels, high and low pressure regulators, air-

bearing flow control and gas pressure sensors.

and flow rates assure operation when greater quantities of dust exist on the surface plate.

The supply of pressurized gas to this bearing is controlled by a valve, and comes from a

low-pressure regulator. Pressurized gas is stored in spherical tanks located in the lower

layer of the robot. A photograph of this pressurized gas subsystem is presented in figure 5.3.

The design and manufacture of this subsystem is discussed in the thesis of Ullman [35].

5.5 Manipulator Subsystem

The manipulator arms used in this robot 2 are similar to the ones used in the research of

Schneider [29]; however, in these experiments, the arm links are 100 mm shorter (250 mm

in length), so that the manipulators can exert greater endpoint forces in a decreased

workspace. The manipulator arm was designed as a SCARA manipulator and can po-

sition the endpoint in 2D. The link joints use high-quality bearings to achieve low friction

ZThe arms were conceptually designed by the author and Stan Schneider, and mechanically designed

and manufactured by Gad Shelef.
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Low pressure

,_----Air Supply

Hexce_ate

Figure 5.4: Air Bearing

The air bearing operates via a very thin layer of laminar flow low-pressure
a/r. ORIGINAL PAGE
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Figure 5.5: Manipulator Arm

Two of these manipulator arms are mounted on the robot. High-quality

bearings and brushless DC torque motors are used to achieve low friction
to motion.
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to motion, while the motors used are Aeroflex brushless DC torquers (V40Y-6H at the

elbows, V40Y-5H at the shoulders) capable of delivering torque smoothly, with low friction

and extremely low ripple torque. The torque motors are located at the base of the arm.

This location offers two major advantages: the arm links have low inertia for fast response,

and the center of mass of the robot vehicle does not shift far from the center of the air

bearing with arm displacements - so there is little side thrust due to imbalances in loading

the air bearing. One of the manipulators is pictured in figure 5.5.

At the arm endpoints are force-sensing grippers. The manipulator arm endpoint has

a gripper assembly that can be pneumatically lowered and raised to capture and release

payloads. Applied forces are sensed using strain gauges mounted at the bottom of the

plunger mechanism. A strain-gauge-signal conditioning board 3 provides conditioned signals

indicating the forces at the endpoint. The schematic diagram of this signal conditioning

board is presented in appendix B. An infrared LED located at the top of the gripper can be

seen by the vision system and used to track the endpoint position. The plunger terminates

in a bearing surrounded by an O-ring. The bearing ensures that no vertical-axis torque is

exerted at the endpoint, and the O-ring provides a snug fit into gripper ports located on

objects to be grasped.

5.6 Sensor Subsystems

5.6.1 Vision System

An overhead vision system is used to determine position and orientation of the robot

vehicle and the payload, and also allows us to measure the robot manipulator's endpoint

position. It uses a camera mounted over the operating surface, a custom VME board

that processes the video signal and provides data to a computer, and vision software that

provides estimates of point locations and body orientations for control programs. The

camera, a Pulnix model TM440S, is shown in figure 5.6. This VME-bus vision board's 4

principle of operation is as follows: endpoints are each marked with an infrared LED, and

3The board was designed by Yosi Druker and built by Godwin Zhang
4The vision board was designed, constructed and documented by Vincent Chen [5] and is based on

earlier, simpler systems developed by Alexander Ill and the author.
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Figure 5.6: Global Vision Camera

This camera is mounted 2 meters above the granite table and provides a

scan image of the workspace 60 times per second.

bodies axe marked with three infrared LEDs. A signal coming out of a video camera is used

by the vision board to determine where bright areas are in the camera's view. These bright

areas are registered and tracked in vision server software 5 which tracks named points and

bodies, and provides estimates of position and velocity (and angular orientation and rate

for bodies) to the control systems.

5.6.2 Joint Angle Sensors

Manipulator joint angles are measured at the motors by analog RVDT's (rotational variable

differential transformers). They are Pickering model 23501-0, and have a linearity of within

1% over the range sensed (150 deg). An RVDT signal conditioning board that converts the

RVDT sensor outputs to angle and band-limited angular rate for the control system was

designed by Tzoor Friedman. Its circuit diagram is included in appendix B. The RVDT

circuit board provides an excitation signal for the RVDTs and decodes their output.

5The vision server software was developed and documented by Stall Schneider [29].
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Figure 5.7: Analog Electronics Layer

The analog electronics layer comprises the two battery packs, power con-

verters and protection circuitry, the circuit boards for power control, bat-

tery charging, RVDT conditioning, force sensing and safety disconnection.

5.6.3 Body Angular Rate Sensor

An angular rate sensor is mounted on the body of the robot, and is used to provide an

estimate of its angular rate about the z (vertical) axis. The angular rate sensor is a Watson

Industries C131 1AV with a sensitivity of 10deg/sec-V. Its output is run through a first

order 15 ttz RC filter in order to reduce high-frequency noise prior to sampling. Due to

drift and bias, it is not suitable for long-term estimates of the robot's orientation: this is

provided by the vision system. The sensor is documented in the thesis of Jasper [11]. The

circuit diagram depicting this hookup is shown in appendix B.

5.7 Analog Electronics Layer
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5.7.1 Power Subsystem

The requirement for minimal external interference with free-flying robot motion makes it

difficult to feed power to the robot from an external source. Some free-flying vehicles use

power feed umbilicals that hang from a tracking platform. Such a rig is complex to design

and build, and in the long run is not a viable option because of the problems caused if

one were to operate two robot vehicles in the same vicinity. Hence, the experimental space

robot model has an autonomous power system that allows the experiment to function for

extended periods of free flight - 45 minutes to 3 hours depending on whether extensive

(power consuming) manipulation tasks are performed.

The power system mimics the functionality of spacecraft power systems. It includes

rechargeable NiCad batteries, battery switching control, a raw power bus, a source of

external power for recharging batteries (solar cells or a nuclear source could be used in

space), power converters and protection circuitry.

When tethered, the vehicle is powered from the external power source to minimize

drain on the batteries, and when free-flying, it is powered by the batteries. The batteries

are 12 Volt VARTA RSH-7 fast-charge, high discharge-rate NiCads. Due to finite charge

in the batteries, they will need to be recharged or replaced often. One luxury of an

earth-bound experiment is that battery packs can be replaced during extended untethered

operation. To ensure that vital on-board systems, such as the computer, remain functional,

the power system has been designed so that power delivery to on-board systems is not

interrupted when on-board energy sources are replaced, or external power sources engaged

or disengaged.

5.7.2 Power Management and Distribution

A schematic overview of the power distribution system of the experimental robot is shown

in figure 5.8. Circuit diagrams to the various components are included in appendix B.

Power is controlled via the power control unit (PCU) by a master power switch, and

a battery switch for each of the two batteries. Power can be switched onto the system's

raw power bus from three power sources: the two batteries and external power. Multiple

sources can be switched on at the same time thereby ensuring continuous power supply in
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Figure 5.8: Power System Overview

The power system accepts external power when docked, and can use it

to charge the on-board batteries. During free-flying operation, the two

batteries power the robot. Regulated power for the anMog and digital

circuitry is provided by DC-DC power converters.

the event of the removal of a source, such as unplugging external power or a battery pack.

The PCU has sensors that allow the computer to read the status of the power system.

The PCU also has override functions, which allow the computer to automatically switch

fresh batteries on and old batteries off the power bus. Batteries are protected with a 15

Amp fuse to limit discharge, and diodes to prevent back-charging off the bus, and with a

2 Amp fuse to protect the battery from excessive charge currents. The raw power bus is

unregulated 4-12VDC at up to 15 Amp, which is used for the motor drivers and two sets

of power converters/conditioners.

One set of power converters (two Computer Products 24S05/50K3 DC-DC converters)

is used to provide regulated 5 V power to the computer and digital electronics. Another pair

(Computer Products 24D15/60K3 and 24D12/60K3 DC-DC converters) provide regulated

+12 V and 4-15 V power to the analog electronics section (e.g. sensor electronics, etc.).

Voltage fluctuations due to changing loads and power spikes on the raw power bus will not

be seen on either the computer or analog electronics regulated power busses.
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5.8 Computer and Communications Architecture

During experimental runs, three computers are used: An on-board computer does the

control functions, an off-board real-time system does vision system processing, and a SUN

workstation does data logging.

Figure 5.9 shows a schematic overview of the organization of the computer networks

used to interconnect these computers. This computer system architecture is an outgrowth

of the work of many students in the Stanford Aerospace Robotics Laboratory, and is

documented in the thesis of Ullman [35].

I
Gateway [(Squaw-Valley)

Backplane Net

Vision Processor

Gateway
(Alpine)

ARL Ethemet [

Fiber-optic Net Real-time
Control

Sun ]

, VorkstationJ
i

Figure 5.9: Software Development Computer Network

The Stanford Aerospace Robotics Laboratory computer network allows a

SUN software development system to communicate with real-time com-

puter systems that perform vision processing and robot control. The

gateway processors isolate the real-time systems from traffic on the main

computer network.

The real-time computer is a Motorola VME 127-1 25 MHz 68030 single board computer,

running the VxWorks real-time operating system. The analog-to-digital converter used was

the 16 differential channel Xycom XVME-590 with 12 bits of resolution and a valid input
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Figure 5.10: Free-Flying Objects used in Manipulation Experiments

These two-free flying objects use aquarium pumps to supply their air

bearings. Gripper ports allow them to be grasped by the robotic arms.

voltage range of-t-10 V. Differential input sensing and scaling of signals to the order of 5-10

V was used to keep noise and floating-ground effects on measured signals to a minimum.

The digital-to-_nalog converter used was the 4 channel Xycom XVME-595 with 12 bits of

resolution and a valid output voltage range of +10 V. Differential sensing in the output

servo amplifiers was used to minimize the effects of differential ground-plane voltages on

inputs to the the torque motor amplifiers. Particular care was taken to reduce the effects

of induced currents and floating ground plane voltages in this experiment because it has no

electrical ground when free-flying, and the power and motor electronics use high currents

in a tightly packaged environment.

5.9 Target Vehicles

This experimental work involves the manipulation and control of free-flying objects. Two

objects were constructed for this experiment: a light, small object and a larger, heavier
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object. Figure 5.10 shows the two free-flying objects that were used in the course of the

experiments. The gripper ports - the two plastic cups at either ends of the objects - serve

as the connection points for the arm grippers.

5.10 Summary

The experimental apparatus, a two-armed flee-flying robot, contains compressed air for

thrusters and flotation, batteries for on-board power, and computer and analog electronics

for sensing and control. A global vision system allows direct endpoint sensing in an inertial

reference frame.

The robot truly does model in 2D the motions one would expect of a free-flying robot.

The application of a slight external force impulse can cause it to translate and rotate for

a substantial length of time - on the order of a minute if the air-bearing table is clean.
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Base Mass 50.0 kg

Base Inertia 3.2 kg-m 2

Left Arm Attachment Point on Base (148,148) mm

Left Upper Arm Center of Mass (59, 2) mm

Left Upper Arm Mass 1.92 kg

Left Upper Arm Inertia 0.02 kg-m _

Left Lower Arm Attachment on Upper Arm (305, 0) mm

Left Lower Arm Center of Mass (200, 0) mm

Left Lower Arm Mass

Left Lower Arm Inertia

Left Endpoint Location on Lower Arm

0.34 kg

0.012 kg-m 2

(295, 0) mm

Right Arm Attachment Point on Base (148,-148) mm

Right Upper Arm Center of Mass (59, -2) mm

Right Upper Arm Mass 1.92 kg

Right Upper Arm Inertia 0.02 kg-m 2

Right Lower Arm Attachment on Upper Arm (305, 0) mm

Right Lower Arm Center of Mass (200, 0) mm

Right Lower Arm Mass 0.34 kg

15Light Lower Arm Inertia 0.012 kg-m 2

Right Endpoint Location on Lower Arm (295, 0) mm

Table 5.1: Free-Flying Robot Mass and Geometry Parameters

The base's mass and inertia are large compared to the manipulator arms.

Coordinates are given in robot segment local coordinates relative to a con-

nection point (0,0): x is along the body toward the next connection point,

and y is perpendicular in the right-handed sense. Arm connection points

are given relative to the center of the base.
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Chapter 6

Endpoint and Object Control

Experiments

In this chapter, the automated computed-torque control computer program developed in

chapter 4 (RD) will be used for dynamic simulation of, and experimental computed-torque

control of the two-armed, free-flying robot model shown in chapter 5. The simulation runs

will verify that the control laws work, generating expectations for experimental results,

and thereby show that a simulation model can predict basic behavior of the system. The

RD computer program is used to model the full dynamics of the free-flying robot, which

consists of multiple rigid bodies.

Two experimental demonstrations of control capability are performed using the free-

flying robot model: The first is simultaneous manipulator CT endpoint position control

of the robot's two arms, even though the robot body can translate and rotate and react

to manipulator motion. The second demonstration is cooperative-arm manipulation of a

free-flying object. The object is both position controlled and orientation controlled. The

squeeze force applied by the manipulators on the object is also controlled. In both cases,

no use of external forces (thrusters) or torques (reaction wheels) was made. The robot

tended to drift or rotate away from its preferred workspace quite rapidly because of this.
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Jacobian Transformation
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Figure 6.1: Overview of Computed-Torque Endpoint Controller

Error controllers for the two manipulator endpoints ensure that trajec-

tories are followed. Momentum control is set to respect conservation of

momentum, and ensures no external forces (such as from thrusters) are

requested.

6.1 Independent Endpoint Control

In this section, simultaneous control of two arm endpoints on a free-flying robot using an

automated CT controller is demonstrated. A full rigid-body dynamic model is used in the

CT control system, a block diagram of which is presented in figure 6.1. The goal of this

experiment is to show that the two arm endpoints can be precisely position-controlled in

spite of robot base motion.

In this demonstration the left arm endpoint will be controlled to a fixed position in

inertial space and right arm endpoint will be controlled to follow a circular trajectory in

inertial space. The motion of the right manipulator will cause the base to react. The

CT control system assumes momentum is conserved, and provides compensation for base

motion.



6.1. Independent Endpoint Control 95

The components of the CT controlsystem: the commanded trajectories,the dynamic

system, the computed-torque controllerand the errorcontrollaws willbe discussedfirst.

This isfollowedby a simulationrun and then the experimentalresults.

6.1.1 Endpoint Trajectories

As listed in table 6.1, the right manipulator endpoint was commanded to hold a fixed posi-

tion in inertial space, and the left endpoint was commanded to follow a circular trajectory

in inertial space of radius 50 mm at 50 rpm. The circular trajectory generator yielded

desired position, desired velocity and estimated acceleration feedforward for the endpoints.

I ]] x(mm) ] y(mm) ]

[ II 0 I - 00 ILeft Endpoint 50sin2r_t 100+ 50cos2_'_t ]

Table 6.1: Trajectory Specification for the Two Endpolnts

The left arm endpoint is to be held fixed in inertial space, the right arm is

to follow a circular trajectory in inertial space.

[sin2  t]Ptraj -_ r + r center

cos 2rwt

[ ]t,-a_ - sin 2_rwt

p = _(2_w)2r [ sin2rwt

atraj [ COS 2_03t

(6.1)

(6.2)

(6.3)

6.1.2 Computed-Torque Controller

The automated computed-torque controller program (RD), described in chapter 4, will

be used both to simulate the dynamics of, and do CT control of the two-armed free-

flying robot described in the previous chapter. The program accepts a description of the

dynamic system at startup. This description file, presented below for the system under
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study, specifies the organization of the dynamic system, the quantities of interest (endpoint

information), and the control objectives for use in the CT controller. The organization of

this file (including format, commands, and units) was discussed in section 4.6.

% Smaplo Configuration File for RD

% Tgo-lrmed, Free-Flying Robot under Endpoint and Momentum Control

% Dynamic Systa Description (all units in SI - kg, m, s)

DynmaicSystum

FrooFlyingBody "B" _ Body of Robot

0.0 0.0 % center-of-mass offset in local frame

SO.O _ mass of base

3.2 % Izz inertia of base

Chain

Body

AttachedAt

JointType

0.059 -0.002

1.92

0.02

"C" Z Upper Right ar_

0.1842 -0.1842 _ joint attachment point

Revolute "Right Shoulder"

% center of mass location of upper arm

% -ass of upper arl

Y, Izz inertia of upper arm about at

Body

£ttachadJt

JointType

0.20 0,0

0.34

0.012

"D" % Loser Right am

0.3048 0.0 % joint attachment point

gevolute "Right Elbos"

% center of mass location of fore arm

% mass of fore arm

% Izz inertia of fore arm about cm

Endpoint

£ttschsdat

EndChain

"Bight Endpoint"

0.2953 0,0 % ondpoint attachment point

Chain

Body

ittachedJt

J o int Typ •

O. 059 0.002

1.92

0.02

"E" % Upper Left lru

0.1842 0.1842 % joint attachment point

Kevolut • "Left Shoulder"

% center of mass location of upper arm

Z mass of upper arl

% Izz inertia of upper arm about an

Body

£ttached£t

"F" % Louor Left lz3s

0.3048 0.0 % joint attachment point
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JointType

0.20 0.0

0.34

0.012

Rovolute "Left Elboe"

center of mass location of fore ari

mass of fore arm

Z Izz inertia of fore arm about am

Endpoint "Left Endpo int"

lttachedlt O. 2953 0.0

EndChain

EndDyna_icSyst _-

sndpoint attachment point

These quantities are of interest to the error controllers

Outputs

Position "Right Endpoint"

Velocity "Right Endpoint"

Position "Left Endpoint"

Velocity "Left Endpoint"

EndOutputs

These are the set of control objectives

Control

Linear_omentui

£ngularMomentmm

£ccsleration "Right Endpoint"

£cceleration "Left Endpoint"

EndControl

This configuration file describes a free-flying robot consisting of bodies B, C, D, E and F,

with two manipulator arm endpoints designated "Right Endpoint" and "Left Endpoint".

The endpoint position kinematically determined by ttD is used by the vision system to

locate the endpoints in its field of view. Vision system position information is used by

the endpoint controllers. The endpoint velocity determined by ttDis used in the error

controller, rather than using vision data. The control objectives are the accelerations

of these two endpoints and control of the system's linear and angular momentum rates.

RD will automatically evaluate the Jacobian equation and inverse dynamics equations

to solve for manipulator torques given these control objectives. It can also, at program

command, evaluate and solve the system dynamical equations of motion for simulation.
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The complete setofcontrolobjectivesforthissystem areas follows:system linearmo-

mentum, system angularmomentum, and the two endpoint accelerations.The augmented

Jacobian techniquediscussedin chapter 3 isused. The controlobjectivesare explicitly

statedhere:

s

aS A= _H s/s" (6.4)
3.29 ap 1

ap_

Note that the desired momentum rates are specified as zero in this investigation to reflect

the conservation of momentum when no thrusters are to be used.

6.1.3 Error Controllers

The errorcontrollersensurethat the endpointstrackcommanded trajectories.Error con-

trollers(part of the feedback controlsystem) are only necessaryifthe behavior of the

system isnot exactlyas expected,which ofcourseisalways true:to some degreetherewill

existmodeling errors,measurement errorsin the state,or unmodeled disturbances.

Figure 6.2 shows that aspectsof thisparticulardynamic system that have not been

modeled, the springand frictionforcesofwiringin thejoints,do contributeto errorin the

abilityto controlendpoint position:an errorfeedbackcontrollerisnecessary.These forces,

although small,axe very difficultto model: the wiringand pneumatic tubes in the arms

grab and releaseas the jointsare moved, so the forces(moments) they exert are nearly

impossibleto predictaccurately.Itisthe roleofthe feedback controllerto drivethe errors

resultingfrom such unmodeled dynamics to zero.

The controlobjectivesinthisexperimentare the accelerationsofthe two endpointsand

the system momentum rates.The desiredmomentum rateswere always zero:effectively

tellingthe controlsystem that momentum was to be conserved.

The errorcontrollersforendpoint positionsdetermine a desiredendpoint acceleration

to cause the errorto behave in a known manner. The desiredaccelerationto respond to

endpoint positionand velocityerrorswas computed usingthe followingcontrollaw:

ade,i_.edP = Kp(p_e, - pP) + K.(v_e , - v p) (6.5)
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Figure 6.2: Endpoint Position Control from a Free-Flying Robot:
Feedforward versus Feedback

Experimental data illustrating simultaneous arm endpoint control from

a free-flying robot. Solid lines are experimental data, dashed lines are

the desired values. The left endpoint is feedforward controlled to a fixed

location in inertia/space, the right endpoint is feedback controlled to

follow a circular trajectory. The sinusoidal errors in the left endpoint

position are primarily due to the unmodeled dynamics of arm joint spring

forces (due to tubing and wiring), and joint friction forces.
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The values for the position gains Kp and velocity gains Kv are listed in table 6.2. The

desired response of these second-error position controllers was a damped sinusoid of natural

frequency 1.5 Hz with a high damping coefficient of 1.1.

IIKp(m/s2)/(m)I gv

Left Endpoint 100 22

Table 6.2: Second-Order Error-Controller Gains

These gains were used in both arm-endpoint position error controllers.

The desired acceleration specified to the computed-torque controller for the endpoints

was computed using the trajectory feedforward acceleration and the error controller:

a p = _- /..p Kv(v_e s _ p (6.6)

6.1.4 Simulation Run

An animated simulation of this system with its controller in operation is presented in fig-

ure 6.31, and shows the two endpoints behaving correctly: one is stationary at (0, -200) mm,

and the other is following a circular trajectory about (0,200) mm. The robot body, al-

though initially at rest, moves in response to manipulator activity. The majority of the

base motion in response to manipulator activity is angular: there is little translational

motion. In this simulation, the controller and simulation dynamic models were perfectly

matched.

6.1.5 Experimental Results

The results of two experimental runs are presented: one that shows the robot's endpoints

following their commanded trajectories, and another that shows disturbance rejection. In

all cases, the controller's sample rate was 60 Hz 2. Endpoint positions were measured with

the vision system. It was not practical to pseudo-differentiate this position information

_The matlab script file for this simulation is presented in appendix D.
_Due to the vision system frame rate.
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Figure 6.3: Animated Matlab Simulation Run of Endpoint Control

from a Free-Flying Robot

This is a dynamic simulation of the experimental robot system with an

endpoint controller. Notice that robot base motion is primarily angular in

nature: arm motion does not result in significant robot base translation.

(by first-differencing) due to quantization and noise. Therefore, endpoint velocities were

estimated given the base velocity (from the vision-system base-position measurements),

base angular-speed from the angular speed sensor, and manipulator-arm joint rates. This

controller consumed 45% of the CPU time on the 25 MHz 68030 real-time microcomputer.

In figure 6.4 the performance of the two endpoint controllers are shown. Errors can

be attributed to unmodeled dynamics such as friction in manipulator bearings and spring

forces introduced by wiring and pneumatic tubes in the arms, and mismodeling of the

sensors and actuators 3. The magnitude of these errors depended on the configuration of

the robot: for example, as the robot arms moved, spring forces would change and sliding

of wiring could cause sudden changes in the spring forces. Unlike with fixed-base robots,

these effects are not easily reduced via position integral control. Free-flying robots, by

there very nature, do not maintain constant manipulator angles over time when holding a

payload stationary. Integral control excels at maintaining accurate stationary positioning

of joints in the face of poorly modeled effects of gravity, mismodeled kinematics, and errors

due to motor forces and friction forces.

3Gain errors, offsets, nonlinearities and friction effects exist.



102 Chapter 6. Endpoint and Object Control Experiments

100 Left Endpoint: X 100 Right Endpoint: X

50
0

r_

0

_. -50

-100
0

-I00

-150

-200
O

0

a, -250

-300
0

I

5

Time (s)

Left Endpoint: Y

10

50
0

_. -50

-100
0

3O0

i 250

200

150

5

Time (s)

Right Endpoint: Y

' 100 '
5 10 0 5

Time (s) Time (s)

10

10

Figure 6.4: Two Arm Endpoint Position Control from a Free-Flying
Robot

Experimental data illustrating simultaneous arm endpoint control from a

free-flying robot. The left endpoint is controlled to a fixed location in in-

ertial space, the right endpoint is controlled to follow a circular trajectory,

both using endpoint feedback. The sinusoidal errors in the left endpoint

position are primarily due to the unmodeled dynamics of arm joint spring

forces (due to tubing and wiring), and joint friction forces.
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Figure 6.5: Disturbance Rejection: One Arm Endpoint Disturbed on

the Free-Flying Robot

Notice how little cross-coupling between manipulator endpoin t motion is
visible in reaction to the disturbances.

In figure 6.5 disturbances introduced at one arm endpoint do little to affect the motions

of the other. The left arm endpoint is disturbed from it's controlled position, and recovers

after the disturbance ceases. The response illustrates that there is little dynamic coupling

between the two manipulator arms. The disturbance and recovery of the left endpoint

has no noticeable effect on the right endpoint's positioning. The major reason for this is

because the joints are free 4, and motions introduced at one end of an arm do not introduce

4The joints have low friction and the low-friction motors have no gearing. The motors axe torque

supplying devices.
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large forces at the other end. The articulated robot arm mechanisms act as vibration

isolators between arm endpoints and bases.

Momentum was specified to remain constant to the controller in these experimental

runs, so no thrusters or other momentum reaction devices were activated.

Jacobian Transformation
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J = v B*
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Figure 6.6: Overview of Computed-Torque Object Controller

6.2 Cooperative-Arm Object Manipulation

In this section, cooperative-arm control of an object from a free-flying robot using an

automated CT controller is demonstrated. A full rigid-body dynamic model is used in the

CT control system, a block diagram of which is presented in figure 6.6. The goal of this

experiment is to show that the manipulated object can be precisely controlled in position

and orientation, along with squeeze force s , in spite of robot base motion.

The orientation of the object is controlled to remain fixed in inertial space, while a

point on the object, it's centerpoint, will be controlled to follow a circular trajectory in

5The squeeze force between two manipulators is defined as the difference in force along their line-oh

action.
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inertial space. The motion of the object will cause the base to move in reaction. The force

with which the manipulators squeeze the object will be controlled. The CT controller,

which is told not to change system momentum, asks for no external forces or torques.

The components of the CT control system will be discussed first: the commanded

trajectories, the dynamic system, the computed-torque controller and the error control

laws. This is followed by a simulation run and the experimental results.

6.2.1 Object Centerpoint Trajectory

As listed in table 6.3, the object's orientation was commanded to remain fixed, and the

object's centerpoint was commanded to follow a circular trajectory of radius 25 mm with a

2 second period (30 rpm). The trajectory generator for the circle provided desired position

and velocity and also an estimated feedforward acceleration.

I Position II x (mm) I y (mm) I
I ObjectCenterII5°sin2_t I 100+50c°s2r_t I
I Orientation II o (rad) I 0 (deg) I
l Object Body II _/2 I 9o I

Table 6.3: Trajectory Specification for the Manipulated Object

The object's orientation is to be held fixed in inertial space, the object's

centerpoint is to follow a circular trajectory in inertial space.

p [sin2  t]Ptraj = r -t- r center

cos 2rwt
(6.7)

P = 2rr
Vtraj

cos 2rwt

- sin 2rwt
(6.8)

aP=tra_ -(2_r)2r[ sin2rwt]cos2rwt (6.9)

6.2.2 Computed-Torque Controller

As in the previous experiment, the automated CT control program (RD) will be used for

simulation and CT control of the two-armed free-flying robot. In this case, however, in
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addition to the robot (consisting of bodies B, C, D, E, and F) there is an object G. The

description of the dynamic system provided to RD is slightly different from that presented

eaxlier in section 6.1.2 to account for this new object in the system:

Z Sample Configuration File for In

Too-lrasd, Free-Flying itobot eith payload under Endpoint and Homent_m Control

Dyn_aic Syetm Description (all units in ST - kg, m, s)

DynamicSyst -m

(bodies B, C, D, E, and F as defined earlier)

Object

[ttacbsd£t

0.11 0.0

1.2

O. 008

Constraint

0.22 0.0

"0" _ Manipulated Object

0.2953 0.0 _ attachment point: gripper port 1

Z center of mass location of object

mass of object

Izz inertia of object about cm

"Right Endpoint"

constrained endpoint: gripper port 2

Endpoint "Object Cent srpoint"

ittached£t 0.11 0.0 X object's center

EndChain

EndDynamic Syetem

These quantities ullou good est'.sates of object position and force

Inputs

Position "]tight Kndpoint"

Position "Left Endpoint"

Force "Right Kndpoint"

Force "Left Kndpoint"

Kudlnput s

Z These quantities are of interest to the error controllers

Outputs

Position

Velocity

Position

Velocity

Position

Velocity

SqusszeForcs

End0utputs

"Right Fmdpoint"

"tight Kndpoint"

"Left Endpo int"

"Left Endpolnt"

"Object Cent srpoint"

"Object Cent srpoint"

,,G|,
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Z These are the set of control objectives

Control

LiuearMomentum

_gularHomentum

hcceleration "Object Centez-point"

knKAccelerntion "G"

SqueezeForce "6"

EndControl

As before, the endpoint position determined by RD is used by the vision system to

locate the endpoints in its field of view. Now, however, these measured endpoint positions

are used by RD to infer the object's centerpoint position, much like a real free-flying robot

would need to infer a position on a grasped body (such as a replacement module). This

inferred position, along with the endpoint velocity determined by RD from base velocity

and joint rates, is used in the error controller. It could also be possible to have the position

and orientation of the object determined by a vision system, in which case these measured

values could be used directly by the controller.

The complete set of control objectives for this system are as follows: system linear

momentum, system angular momentum, object centerpoint "Object Centerpoint" acceler-

ation, and object G angular acceleration. The augmented Jacobian technique discussed in

chapter 3 is used. Since this is a closed-chain mechanism, a motion constraint is implicitly

included in the control objectives. The zero value for the constraint objective was discussed

in section 3.3.3. The (dynamic) control objectives are stated here:

s

__HS/S •
dt

aS A: a ObjectCenterp°int (6.10)
3+29

_vG

0

The squeeze force, while controlled in this system, is not a dynamic quantity6: it is purely

a function of the kinematics and the applied joint torques. The system's kinematics (joint

SThe squeeze force can be determined using the principles of statics - dynamics are not required.
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angles) can be used to determine joint torques that correspond to a squeeze force indepen-

dently of the dynamic quantities. Of course, an error controller on the squeeze force can

use measured endpoint forces to compensate for errors in the sensed joint angles and errors

in the actual torque applied by the actuators on the manipulators.

RD will automatically evaluate the Jacobian equation and inverse dynamics equations

to solve for manipulator torques given these control objectives. It can also, at program

command, evaluate and solve the system dynamical equations of motion for simulation.

6.2.3 Error Controllers

The error controllers ensure that the object's centerpoint and orientation track commanded

trajectories, and that the object squeeze force is regulated. The control objectives for this

experiment are the angular acceleration of the object orientation, the acceleration of the

object's center-point, the squeeze force on the object, and the system momentum rates.

The error controllers for endpoint positions determine desired endpoint accelerations

to cause the error to behave in a known manner. As discussed in the previous experiment,

feedback control is necessary to reduce the errors caused by unmodeled dynamics (wiring

spring and friction forces in the arm joints). In the case of the second-order position

controllers, this response was a damped sinusoid with the same bandwidth response as

previously.

The object's squeeze force f is controlled by a feedforward component Fdesl,.ed and inte-

gral error feedback 7. The center of the payload p is position controlled, and the orientation

of the payload body G is orientation controlled, so the control objectives in response to

= Kp(p,_,, - pP) + K,_(v,_,, - v v)

a G K_(OGdes _ OG)= K v(Sdc,-O a)+

object trajectory errors and object squeeze force errors are:

p
acornmanded

B
OLcommanded

F com manded '(= Ki Fmeasured -- Fdesired) + Fdesire d

(6.11)

(6.12)

(6.13)

The values for the position gains Kp and velocity gains Kv are listed in table 6.4. The

position and velocity gains for position control, as in the previous experiment, were chosen

7No proportional feedback was used: proportional feedback in a system with no dynamics causes prob-
lems when run in discrete time.
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for the desired bandwidth of response. The effect of the sensor noise on endpoint control

becomes more evident as the payload mass and inertia increase: computed-torque control

scales the manipulator torques to the mass parameters of the manipulated object.

Object Centerpoint

Object Orientation

Kp (m/s2)/(m)
100

K_ (rad/s2)/(rad)
100

1 K_ (N)/(N-s)Squeeze Force 0.2

K_ (m182)l(mls)
22

K_ (rad/s_)/(rad/s)
22

Table 6.4: Error Controller Gains for Position and Orientation and

Squeeze Force

The position controller uses a second-order control law. The force con-

troller uses an integral control law.

The force control integral feedback gain was chosen to provide a slow response to errors.

Motion of the endpoint gripper mechanisms within the gripper ports s cause sudden spikes

on the force sensors and can affect the integrated error sufficiently to saturate the arm

actuators if the feedback gain I(_ is high. Saturating the arm actuators typically results

in sudden odd motions. When the force integral-feedback gain is zero this effect does not

Occur.

6.2.4 Simulation Run

An animation of this system with its controller in operation is presented in figure 6.79 ,

which shows the object behaving correctly: it has constant orientation, and the center

is following a circular trajectory about (0, 0). The robot body, although initially at rest,

moves in response to manipulator activity. The majority of the base motion in response

to manipulator activity is angular, but there is also noticeable translational motion. The

mass of this object (6.9 kg) causes the base reactions to be somewhat larger than those

without an object, shown in figure 6.3. The controller and simulation dynamic models

SThe fit of the grippers in the ports is not very tight, and the gripper can move around a bit (estimated

at 0.5 mm).

9The matlab script file for this simulation is presented in appendix D.
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were the same forthissimulationrun. Actual robot coordinateinformationwas used as

an initialconditionforthissimulation:automatic numericalrelaxationof the constraints

isperformed by the simulationcode usingthe augmented constraineddynamics equations

developedin section2.4.2.

Figure 6.7: Animated Matlab Simulation Run of Object Control

from a Free-Flying Robot

This is a dynamic simulation of the experimental robot manipulating a

6.9kS objectunder endpointcontrol.Noticethatthe resultingrobot

base motion is primarily angular in nature. (Robot base translation is of

course larger than that seen without a payload, as in figure 6.3.)

6.2.5 Experimental Results

The results of three experimental runs are presented: one that shows the object following its

commanded trajectory in space, one that shows the response of the squeeze force controller,

and one that shows disturbance rejection. The controller's sample rate is 60 Hz l°. Object

position and orientation were inferred from the manipulator endpoint positions, which

were obtained directly from the vision system, object velocity and angular velocity were

estimated given the base velocity (from the vision system base-position measurements),

the base angular-speed measurement from the angular-rate sensor, and manipulator-arm

joint rates. Velocities determined this way had substantially lower noise than velocities

obtained from differencing endpoint position information, due to quantization of the vision

S°Due to the vision system frame rate
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Figure 6.8: Cooperative-Arm Object Position Control from a

Free-Flying Robot

Experimental data illustrating cooperating-arm object position control

from a free-flying robot. The object's or/entation is controlled to a fixed

orientation in inertial space, the object's cen terpoint is controlled to fol-

low a circular trajectory about (0, 0). For these three subplots, the solid

lines are experimental data, the dashed lines are the desired response. The

sinusoidal errors in the object orientation are primarily due to the unmod-

eled dynamics of arm joint spring forces (due to tubing and wiring), and

joint friction forces. A plot of base motion shows its initial translational

motion only slightly affected by object motions.
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sensor. This controller consumed 75% of the CPU time on the 25 MHz 68030 real-time

microcomputer.

The performance of the object's centerpoint position controller is shown in figure 6.8.

The object orientation is held near 90 deg, as commanded, even though the robot has

an appreciable translational velocity. As with the endpoint controller in the previous

experiment, unmodeled torques from the wiring and tubing in the manipulator arms cause

errors. These errors can be difficult to suppress in a feedback control system when the

sensors are noisy: turning up feedback gains results in large actuator forces due to noise

amplified in the feedback system. The angular rate of the object is inferred from the base

angular rate and the manipulators' angular rates. This kinematically derived estimate,

although less noisy than pseudo-differentiating vision system information, is still subject

to the noisy information from the base angular rate sensor.

The robot base's motion is primarily angular in reaction to moving the object. The

reactions when moving an object are of course larger than when moving just the manipu-

lators. Moving a heavy object (6.9 kg) side-to-side more than a few centimeters causes the

robot to rotate enough to exceed the range of motion of its manipulator arms. If heavy

objects such as this are to be successfully manipulated over larger distances, some form of

momentum control will need to be employed by the robot. It is important to note that an-

gular motion - unlike linear motion - is easy to control without mass expulsion. Chapter 8

discusses future research to investigate this problem.

Experiments showing the performance of the squeeze force controller in response to a

step command, with and without error feedback, are shown in figure 6.9: the unmodeled

dynamics that affect position control are not as significant in the force control. The squeeze

force by definition is non-dynamic in a purely rigid body system, 11 so barring miscalibra-

tions, no changes in object position or orientation are expected. In practice, too, changing

the squeeze force results in very little motion of the object. Furthermore, because this

cooperative-arm control technique does not resolve motion constraints with position, the

object squeeze force is not affected by errors in joint angle measurements. This is evi-

dent in the accuracy of the force control achievable experimentally without any feedback.

11In a rigid body system, the force can be controlled purely by changing actuator forces: no motion
results.
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Figure 6.9: Cooperative-Arm Object Squeeze-Force Control from a

Free-Flying Robot

Experimental data illustrating object squeeze-force control from a free-

flying robot. On the left side, only feedforward forces are used, on the

right side, feedforward with integral feedback control is used. With pure

feedforward, force control within 10% is achieved: the motor torques and

system angle sensors are well calibrated. When integral force feedback

control is used the steady state error is near zero, but an overshoot occurs

as the integrator adapts to a new offset. Note how little the object moves

in response to changed force commands - motion is almost in the sensor

noise. Ideally, it would not move at all.
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The small errors experienced can be attributed to unmodeled dynamics such as friction in

manipulator bearings and spring forces introduced by wiring and pneumatic tubes in the

arms, and mismodeling of the sensors and actuators 12.
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Figure 6.10: Cooperative-Arm Object Control from a Free-Flying

Robot: External Disturbance Rejection

The object is disturbed briefly by an externM force. Small spikes in

the squeeze force measurement are due to the mechanical play in the

object gripper mechanism. The impulse from the external disturbance

is rejected by the object controller: the object quickly returns to the

desired position and orientation. The impulse does, however, affect the
momentum of the system: it sets the robot base into rotation.

The response to disturbances of object positioning and squeeze force are shown in

l_Gain errors, time-varying biases and sensor nonlinearities exist.
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figure 6.10. The object is briefly tapped: the object position and orientation are quickly

returned to the desired value. The squeeze force undergoes some small spikes due to

mechanical play in the gripper mechanism; however, these are very small, approximately

0.5 N. The impulse from the disturbance changes the system momentum, and since the

object is controlled to be stationary, the robot base's velocity and angular velocity must

change.

Momentum was specified to remain constant (to the controller), so no thrusters or other

momentum reaction devices were activated.

6.3 Summary

In this chapter, the automated CT control computer program (RD) developed in chapter 4

was used to do dynamic simulations of the experimental robot system, and CT control of

the experimental robot itself.

Dynamic simulations of the two-armed free-flying robot system using the RD augmented

simulation equations predicted base motions in response to manipulator motions, and in-

creased base motions as a heavier payload were moved. The ability of these simulation

equations to numerically relax the closed-chain constraints allowed full-state information

read out of the experimental robot to be plugged into the simulation directly, even although

it was not precisely consistent.

Simultaneous two-arm endpoint control experiments demonstrated the ability to control

both arm endpoints by using an endpoint sensor and a feedback control system based

on the full free-flying multiple rigid-body system. Cooperative-arm object manipulation

experiments demonstrated the ability to control object position, orientation and squeeze

force: important when manipulating fragile objects. Overall, controller performance was

quite satisfactory in the presence of the sensor noise (body angular rate sensor, vision

sensor) and sample-rate limitations.



Chapter 7

Can Base Accelerations be

Neglected?

In the previous chapter, endpoint and object control from a free-flying robot were demon-

strated using a full free-flying rigid-body model in the CT controller. Modeling full dynam-

ics in the CT controller, while "exact" in solution, is computationally very expensive. For

spacecraft, much greater numeric processing requirements mean much greater computer

complexity, lower reliability, greater power requirements, and increased vehicle mass. If a

control algorithm is to be viable for space-borne robots of the near future, it must be as

simple as possible while meeting performance requirements.

The conditions under which a complex model in the CT controller is necessary, and

under what conditions a simplified model will perform adequately are examined in this

chapter. In this chapter, two simplifications are examined: neglecting base velocities and

neglecting base accelerations. It is found that neglecting the base angular velocity prevents

accurate compensation for nonlinearities, and saves little computation; but neglecting base

accelerations is quite tolerable and can save a significant amount of computation. Mismod-

eling due to neglecting base accelerations is compared to that due to uncertainties in mass

distribution: errors in mass distribution of 5% can result in acceleration errors of 5% when

using the CT control method.

Specifically, the effect of neglecting base accelerations is predicted and experimentally

verified for two test cases with the experimental robot. These two experiments suggest

116
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that, for the robot mass parameters and manipulator articulation used in the experiments,

neglecting the base accelerations 1 can result in negligible endpoint controller error. Simu-

lation results then show many other cases in which base accelerations could be neglected,

and others where full modeling may be desirable. On the basis of this combined study a

wide range of free-flying robot system parameters is established wherein it is possible to

use a simplified endpoint CT controller: one that neglects robot base accelerations. It is

shown that a tool such as RD can be used to predict controller performance and determine

that a particular design fits within this regime.

A consequence of neglecting robot base acceleration in the simplified CT controller is

that the Jacobian augmentation terms for momentum control or base control are no longer

included: this control will then need to be external to the manipulator controller.

7.1 Simplified Computed-Torque Endpoint Control

Consider, for example, the case where a robot is able to impart forces or torques via massless

(e.g., magnetic) actuators to a payload. The payload can then be made to accelerate as

desired. The robot's mass and inertia characteristics will affect the way the robot reacts,

but not the way the payload accelerates. It would then be possible to ignore all aspects

of the free-flying nature of the robot in the manipulator controller's model; to assume it

fixed 2 .

Real robots, however, have non-zero mass and inertia in their manipulators them-

selves, and using a fixed-base model in the CT controller can adversely affect performance.

Although changes in configuration of the manipulator are compensated for by the CT con-

troller, performance problems will come from unmodeled inertial forces and torques due to

the linear and angular acceleration and angular rotation of the base. These two compo-

nents have different impacts on the performance of the control system, and have radically

different computational costs.

Previously published experimental work in endpoint control from free-flying robots

by Alexander [1], Umetani and Yoshida [36], Carignan [3], and theoretical work by Vafa

1The accelerations considered are the linear accelerations of the center-of-ma_s of the robot body, and

the angular accelerations of the robot body.

_Station-keeping control would still be required, of course.
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and Dubowski [7], has concentrated on formulating new controllers to compensate for all

of the dynamics of a free-flying system. Masutani et al [41] were the only ones truly

to investigate (in simulation) the performance of simplified endpoint controllers on free-

flying manipulators. They used Umetani and Yoshida's generalized Jacobian technique to

do Jacobian transpose control. This method, unfortunately, ignores all dynamics in the

system.

Up until very recently, there has been no investigation of the use of simplified dynamic

models for endpoint CT controllers on free-flying robots. In newly published work, Pa-

padopolous and Dubowski [22] suggest that "nearly any control aJgorithm that can be

used for fixed-base manipulators can be also employed in the control of free-flying systems,

based on the structural similarities between the kinematic and dynamic equations of a

free-floating space system and the equations for the same manipulator with a fixed-base".

Fixed-base robot manipulator endpoint CT control laws are in fact simplified endpoint

CT controllers. CT control, by definition, already handles changes in manipulator con-

figuration, a feature of moving free-flying robots. The real differences that separate full

free-flying CT controller models from fixed-base CT controller models are the unmodeled

inertia] forces and torques due to the angular velocity and the linear and angular acceler-

ation of the base of the free-flying robot. These components have different impacts on the

performance of the control system depending on the articulation and mass distribution of

the robot/payload system, and will be examined separately.

7.1.1 Neglecting Robot Base Angular Velocity

The earth is massive, and it's angular velocity is small: its reference frame approximates

a secondary Newtonian frame for many applications, and fixed-to-earth robotic manipu-

lation may be performed in this slowly rotating reference frame using a fixed-base model

controller.

If, however, the angular velocity of a robot manipulator's base is large (as it can be

when a robot is free-flying), then it's reference frame is non-Newtonian. Points along the

manipulators will experience centripetal accelerations due to the robot's angular veloc-

ity. In the full-model CT control scheme, these additional centripetaJ accelerations are
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accounted for in the inverse dynamics process - the least computationally expensive part

of CT control. In the I_D program, the cost of including centripetal acceleration terms in

the kinematics and inverse dynamics is 47 total additional operations 3 - equivalent to the

amount of computations required in the recursive algorithm for one additional link. This

computational cost is low because of the recursive algorithm used to compute the kine-

matics and inverse dynamics: the compensation is introduced at the start of the kinematic

chains and is then automatically propagated.

For example, a 2D free-flying robot with two arms requires 142 operations to evaluate

the forward kinematics and 123 operations to evaluate the inverse dynamics. Including the

base angular speed adds 47 computations, 20%, to the cost of this portion of CT control.

This additional cost is small compared to the cost of solving the system Jacobian, however.

This will be examined next.

7.1.2 Neglecting Robot Base Accelerations

Free-flying robot base linear and angular accelerations occur in response to manipulator

activity and external forces. If the robot body's mass and inertia are very large it is

inconsequential to assume zero robot base accelerations; for the robot base accelerations

will be small compared to manipulator endpoint accelerations and manipulator articulation

will usually isolate the manipulator endpoint from base linear and angular accelerations.

If the robot's base is not very large, this will not be true.

Unfortunately, unlike for base angular velocity (discussed previously), including base

accelerations in a CT model is not cheap. 4 In a fuU-model CT controller, the system's

accelerations, including base accelerations, are solved for by inverting the Jacobian matrix.

The accelerations of the robot base can be solved along with the manipulator accelerations

if the manipulator Jacobian is augmented with momentum terms. If the base accelerations

are assumed to be zero (or non-varying), then a Jacobian suitable for a fixed-base robot 5

can be used to solve for the manipulator generalized accelerations. Since the solution of

3See table 4.1
4Constant base acceleration, such as that due to rocket (thruster) activity can be easily compensated

for: here we consider base accelerations in response to manipulator activity.
5Not containing the momentum augmentation terms.
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the Jacobianequationrequires(in 3 + 2n 2 -_n) operations 6, the reduction of n by 3 (for

2D systems) and 6 (for 3D systems) can produce substantiM computationM savings. For

example, a 3D robot with a single 7 degree-of-freedom manipulator arm would require 1794

operations to solve the full Jacobian inverse 7, and 331 operations to solve the simplified

Jacobian inverse. In fact, greater savings in computation than this are possible if the robot

has multiple manipulators: an example follows.

7.1.3 Neglecting Base Accelerations: An Example

Solving a simplified Jacobian matrix equation, as opposed to a full model Jacobian ma-

trix equation, offers substantial computational savings. For example, a two-arm endpoint

controller Jacobian for a free-flying 3D robot has the form:

J __

H 1

L]

pX
V 1

p2
V 1

H 2 •.. H n

L2 L.

pl I
V 2 V p

p2 2
V 2 V p

nXn

(7.1)

= [ f P' vPn'] _ _ (7.3)ji vl v2

eSee table 4.1

7Actually, Solving Az = b, for x.

SThis will work if the generalized speeds are defined so that they do not mix joint angle rates of the two
A •

manipulators. A choice of u, = q, guarantees this.

The momentum terms augment the normal manipulator Jacobian to allow the solution for

base as well as manipulator accelerations. The order of the system, if the two arms each

have 7 degrees of freedom is n = 6 + 7 + 7 = 20. The basic manipulator Jacobian, not

including momentum terms, for this two-arm 3D robot is:

J = v 1 v 2 ... v_ (7.2)
p2 p2 2

Vl V2 vP (n-6) X(n-6)

The manipulator accelerations in this Jacobian are independent for solution purposes -

to be expected in a fixed-base system. The two manipulators (and their Jacobian matrices)

can therefore be treated independently, s The Jacobian can then be chopped into two, one

small Jacobian for each manipulator, each of which looks like:
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Neglecting base accelerations and solving two Jacobian equations of half the size

can yield quite a computational saving. Continuing the example presented above, a 3D

robot with two 7 degree-of-freedom manipulator arms (n=20) would require 61329 opera-

tions to solve the full Jacobian equation, 2212 operations after neglecting base accelerations,

and only 662 operations after the manipulator Jacobian matrix is split.

This brief example serves to illustrate that substantial computations - approximately

an order of magnitude - can be saved if base accelerations of a free-flying robot's base

are neglected in the CT control system. The example also shows one of the fundamental

difficult aspects of the CT control technique: the necessity of solving a matrix equation.

It makes the cost prohibitive of using the CT control technique for systems in which many

degrees of freedom must be modeled.

7.2 Simplified Modeling

The two differences between a fixed-base and free-flying CT controller model - base veloci-

ties and base accelerations - affect how both the Jacobian equation solution and the inverse

dynamics are done. The simplified controller model that will be studied here neglects base

accelerations but includes modeling of the base angular velocity. The simplified Jacobian

equations obtained by neglecting base accelerations are not identical to fixed-base equa-

tions if robot base angular velocity is to be accounted for, although the simplified Jacobian

is a fixed-base manipulator Jacobian. The base angular velocity enters into the model as

nonlinear terms in the Jacobian equation, and as nonlinear terms in the inverse dynamics.

The equations used for CT control to deliver the joint torques, given desired endpoint

accelerations, are similar to the full free-flying model equations, except for the Jacobian

equation. The Jacobian equation will be used to solve for a subset of the system generalized

accelerations; the manipulator generalized accelerations. The base accelerations will be

assumed to be zero. The effect of this is to remove the rows of the Jacobian equation

dealing with momentum control or base acceleration control (it depends on what the control

objective may have been), and removing the columns of the Jacobian matrix that depended

on the base accelerations. The resultant Jacobian is the same as the manipulator Jacobian

9See table 4.1
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would be if the manipulator were fixed-base.

An example involving a two-link arm on a 2D free-flying robot will be used to illustrate

this simplification. This system has 5 degrees of freedom: 3 of the base and 2 of the

manipulator. The full-model control objectives include the system's linear momentum and

angular momentum about the system's mass center and the acceleration of the manipulator

endpoint p. The augmented Jacobian matrix to solve for the accelerations exactly is

J .._

3,35

Lf Ls Las L4s Ls

HSlS* HS/S * _s/s* _s/s* _s/s*1 ""3 _4 A_5

v:
5x5

(7.4)

The approximate system accelerations, assuming zero base accelerations, are

F0
I

0

_lappr°x 7.3 0

_4

_s
5x_

If this simplification is applied, the manipulator Jacobian matrix becomes

J7._.5 [ v4 p VSP]2x2 (7.6)

and the row-reduced augmented Jacobian derivative matrix ,_* is

It is not the same as that for a fixed-base robot: the base angular velocity terms ÷_ axe

included, and the base linear velocity terms ÷_ and ÷_ are present but zero (as always).

The generalized accelerations for the manipulator can each be determined with the

following simplified Jacobian equation:

(7.5)

+ (7.s)

The two-arm generalized accelerations can be combined with the zero base acceleration to

yield an approximate system generalized acceleration, as shown in equation 7.5.
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The inverse dynamics process will use the approximate acceleration solved for in equa-

tion 7.8 with the full system state to determine actuator torques. The inverse dynamics

equation must be done with the full free-flying equations of motion:

F = M_.pp,.o_+ Nu
2.5

r = W-1F

where the matrix W maps generalized speeds into the derivatives of the generalized coor-

dinates (joint rates).

n

For CT control, a recursive Newton-Euler algorithm discussed in section 4.4.2 is preferred:

it yields results identical to those produced by the use of this equation.

By using a simplified CT controller such as this, the ability to control momentum is

lost: it will need to be done by an external controller. In the event that momentum control

(for station-keeping) produces large base accelerations ul..3, the Jacobian equation can

include them, but as constants. These constants can be included using a partition of the

augmented Jacobian ,7"1..3,4..5: those columns that were neglected can now be included, but

are treated as invariant to manipulator accelerations.

_4,s,.,=r.6(J)-l(-J'u + a_e 8 - ffl..3,4..5_21..3) (7.9)

In summary: a simplified free-flying manipulator Jacobian matrix equation (one of 7.8

or 7.9) has many similarities to the fixed-base manipulator Jacobian matrix equation, but

is not identical to it. The order of the matrix equation is reduced by the number of degrees

of freedom due to free-flight (3 in 2D, 6 in 3D). This method allows smaller Jacobian

matrices to be used (with corresponding savings in computation), while providing accurate

compensation for all the nonlinear terms: nonlinear terms are a function of the state, not

of the base accelerations.

7.3 Errors due to Mismodeling

Over what range of free-flying robot parameters and/or payloads is neglecting base accelera-

tions permissible? Unmodeled or mismodeled dynamics in a CT controller are responsible
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Figure 7.1: An Error-Based Feedback Controller

Errors between desired accelerations and actual accelerations eventually

show up in measured positions and velocities. The feedback controller

acts on position and velocity errors.

for a mismatch between accelerations in the real system and accelerations asked by the

control system. A typical feedback control system schematic is shown in figure 7.1. One

measure of the accuracy of a computed-torque endpoint controller is how well the physical

system matches the desired accelerations asked of the controller. In general, there will be

imperfections due to friction, imperfect sensor measurements, and imperfect knowledge of

robot mass distribution. If the dynamic system is modeled with simplifying assumptions,

then there will also be errors due to the unmodeled dynamics. These model errors result

in incorrectly computed torques, and hence incorrect system endpoint accelerations, for

which feedback must compensate, albeit imperfectly.

These incorrect endpoint accelerations will be the sum of (a) a linear function of the

desired accelerations and (b) unmodeled nonlinear components:

aendpoint ._ Tzx Txll adesired + fNL

= T a desired + fNL

(7.10)

(7.11)
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The transformation matrix T describes endpoint accelerations seen at the manipulator tip

in response to accelerations asked of the control system when the simplification of zero

base accelerations is made. Ideally, this matrix is unity, and the nonlinear terms fNL are

zero.

Data plots will be presented that contain the values of this transformation matrix.

The deviation of this matrix from the identity matrix will be the basis of evaluating the

mismatch between the full free-flying model and a simplified model in an initial study

in simulation. Of course, feedback control can quickly compensate for small errors: to

establish a reference figure, robot mass and inertia parameters are not usually known to

an accuracy of greater than 5% (particularly inertia). Endpoint acceleration errors of this

order of magnitude result in position errors small enough to be difficult to observe. If the

control system is asked to respond within its bandwidth, the error can be expected to be

1 x a_rror, where K v is the position error control gain.

The errors in nonlinear terms fNL will be zero if the base's angular velocity is accounted

for. All of the nonlinear terms are functions of only the state (joint angles, angular rates),

and are independent of the system accelerations ul..n. In section 7.1.3 it was shown that

inverse dynamics is a computationally inexpensive process compared to that of solving

the Jacobian matrix equation. Thus, including the free-flying base's angular velocity here

ensures accurate nonlinear feed-forward terms at very little increase in computational cost.

7.3.1 Variations in Base Mass and Payload Mass Parameters

Here the effects of neglecting base accelerations on a single-armed free-flying robot having

the mass distribution of the experimental robot will be investigated using numeric sim-

ulation equations provided by RD. The CT control system is asked to deliver endpoint

accelerations along the inertial _ and _ directions 1° over two regimes: a range of robot

base mass parameters, and a range of payload masses. Graphs are then plotted that show

the values of the transformation matrix over a range of parameters.

1°Accelerations a =[1,0] and [0,1] in Cartesian coordinates.
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Figure 7.2: Endpoint Acceleration Deviations

from the Norm when Neglecting Base Accelerations, as a
function of Base Mass Parameters

This plot depicts the deviation from an ideally unity transformation ma-

trix between commanded and actual endpoint accelerations. When the

mass and inertia are very large, the system behaves as if it is fixed-base.

As the mass and inertia of the base decrease, the fixed-base approxima-

tion holds less well. Finally, as the mass and inertia of the base become

very small, the larger modeling errors result in a small amount of cross-

coupling between endpoint x and y accelerations. However, the transfor-

mation never deviates substantially from unity, because the lower arm has

significant mass away from the elbow. The case of nominal mass distri-

bution, that of the experimental robot, is indicated by the vertical lines.
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Base Mass

The effect of simplifying the control system on the transformation matrix over a wide range

of base mass (and inertia) values is shown in figure 7.2. Base mass parameters (mass and

inertia) are varied with respect to those of the experimental nominal robot - 50 kg and

2.5 kg-m 2 - by a factor that varies between 10 -3 and 103. ActuM manipulator endpoint

acceleration response Tx_ (in the x direction) deviates no more than 3% from the ideal

for a very wide range of base masses. Similarly, actual endpoint acceleration response Ty_

(in the y direction) deviates no more than 2%. Cross-coupling between x and y endpoint

accelerations, Txv and T_, is low - less than 8% in extremes, less than 1% for most of the

range. These deviations are very small: it is not likely that they would even be noticed once

a feedback controller is engaged. Friction effects and system mass parameter uncertainty

are however undoubtedly greater than this.

Payload Mass

The effect of simplifying the control system on the transformation matrix over a wide range

of payload mass values is shown in figure 7.3. In this case, payload mass introduced at

the end of the manipulator arm is varied between 10-2 and 102 kg. Actual manipulator

endpoint acceleration response Txx (in the x direction) deviates no more than 0.5% for a

very wide range of payload masses. Similarly, actual endpoint acceleration response Tyy

(in the y direction) deviates no more than 0.1%. Cross-coupling between x and y endpoint

accelerations, Tx_ and Tvx , is very low - typically less than 0.6%. Interstingly enough, as

the mass of the payload increases, the errors due to neglecting base accelerations decrease.

This is because as the payload mass increases, the manipulator dynamics become less

significant. The variations in the transformation matrix T are clearly negligible in this

range.

These endpoint acceleration errors will have virtually no effect on the ultimate response

of the endpoint control system. Experiments that compare the performance of a full-

model CT endpoint controller versus a simplified controller should not reveal any noticeable

change in response. Within the bandwidth of a feedback control system the position error

can be expected to be _ × aerror, where Kp is the position error control gain.
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Figure 7.3: Endpoint Acceleration Deviations

from the Norm when Neglecting Base Accelerations, as a

function of Payload Mass

This plot depicts the variation of an ideally unity transformation matrix

between commanded and actual endpoint accelerations. When the pay-

load mass is very large, the system behaves as if fixed-base. As the mass

of the payload decreases, the fixed-base approximation holds less well

The transformation never deviates substantially from unity. The nomi-

nal mass distribution, that of the experimental robot, is indicated by the

dashed vertical lines.
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7.4 Experimental Results

Neglecting base accelerations of a free-flying robot may result in no noticeable decrease in

performance of the controller, depending on the mass distribution in the dynamic system.

The mass distribution of the experimental robot is as described in section 6.1: the base

is massive (50 kg) compared to the manipulator arms (2.2 kg). In this section, two ex-

periments performed with this robot demonstrate that, for its mass characteristics, both

two-arm manipulator endpoint control and cooperative-arm object manipulation from a

free-flying robot suffer no degradation in performance from using the simplified CT control

system. The errors introduced by neglecting the base accelerations are very small com-

pared to other modeling errors such as joint friction and spring forces, and uncertainty in

the mass distribution (on the order of 5%).

7.4.1 Manipulator Endpoint Control

In this experiment, the positions of the two manipulator endpoints are position controlled.

One is controlled to a fixed location, the other to follow a circular trajectory (just as

described in section 6.1).

The expected acceleration errors, when read off of the graph in figure 7.2, for the base

mass and inertia parameters of the robot (unity), are clearly less than a percentage point

off in all the terms. The transformation matrix expressing actual endpoint accelerations in

terms of desired accelerations is approximately

T = [ 1.004 0.008]0.003 1.000
(7.12)

It should be difficult to observe any difference in endpoint error when the simplified end-

point controller is used. This is evident in figure 7.4, where a simulation of the experimental

robot shows that modeling errors due to the simplified controller result in endpoint error

on the order of 100 microns. This simulation employed a feedback controller using the

same gains as those in previous endpoint experiments (section 6.1). The magnitude of this

controller mismodeling is equivalent to an error in the mass and inertia estimates of the

robot of the same magnitude: ½%.
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Figure 7.4: Expected Endpoint Controller Performance when

Neglecting Free-Flying Robot Base Accelerations

This particular simulation predicts that neglecting robot base accelera-

tions in the endpoint feedback control system of the experimental robot

should result in very small position errors - on the order of 50-100 microns

for the left arm endpoint. The errors due to neglecting base accelerations

(endpoint acceleration errors of less than 1are less than those due to un-

certainties in mass distribution (on the order of 5%).

10
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Figure 7.5: Two-Arm Tracking Controller Data where Base

Accelerations are Neglected in the CT Controller

This experimental data shows a free-flying robot that neglects robot base

accelerations in its CT control system. The CT controller does, however,

compensate for the nonlinear effects of base angular velocity.

Figure 7.5 shows experimental data similar to that presented in section 6.1, page 94 -

it uses an identical dynamic model in the kinematics and inverse dynamics• In this case,

however, the CT controller neglects robot base accelerations. The tracking performance of

this controller, like the full-model CT controller, is quite satisfactory. Endpoint errors for

full-model CT control and simplified-model CT control are shown in figure 7.6. The errors

visible are on the order of 5 mm peak-to-peak in both cases. They are primarily due to

spring forces in the joints due to wiring and tubing• There was no noticeable difference in
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Figure 7.6: Differences in Endpoint Position Error between Including

and Neglecting Free-Flying Robot Base Accelerations

This data shows that there is little noticeable change in error ff a CT

endpoint controller neglects robot base accelerations. The position error

is of the left arm endpoint, presented in figures 6.4 and 7.5. X error is
the solid line, Y error is the dotted line. Errors due to ditticult-to-model

wiring spring and friction forces exceed those due to not modeling base
accelerations for this robot.

the performance of the two endpoint controllers.

7.4.2 Object Control

In this experiment, the positions of an object grasped by both manipulator arms will be

controlled. The object's orientation is controlled to a constant angle, and its centerpoint

is controlled to follow a circular trajectory (just as described in section 6.2).

The expected object acceleration errors, when read off of the graph in figure 7.3, for

a payload mass of 6.9 kg are dearly less than a percentage point off in all the terms, in

fact, most of them are on the order of 0.1% off. This graph (figure 7.3) also shows that

as the payload mass increases, the modehng error decreases. The modeling error, already

negligible in the previous example, will be even smaller here. The transformation matrix
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Figure 7.7: Object Controller Data where Base Accelerations are

Neglected in the CT Controller

This experimental data shows the performance of a CT control system

that neglects robot base accelerations on a free-flying robot. The CT

controller does, however, compensate for the nonlinear effects of base

angular velocity. Residual error is not substantially different from that
of a CT controller that includes base accelerations: a comparison follows

in figure 7.8. Since the object's center position is inferred from the grasp

points, mechanicaJ play causes slight jumps in estimated position.



134 Chapter 7. Can Base Accelerations be Neglected?

v

m

E
v

4

3

2

1

0

-1

Full Model: X Position Error

0 5

Time (s)

10

3 Simplified Model: X Position Error

2

_" 0
v

5 Full Model: Y Position Error

-11

-1 ' -10
0 5 10 0 5

Time (s) Time (s)

I

0 5 10

Time (s)

Simplified Model: Y Position Error

10

Figure 7.8: Differences in Object Positioning Error between Including

and Neglecting Free-Flying Robot Base Accelerations

This data shows that there is little noticeable change in error if a CT

object controller neglects robot base accelerations. Errors are mainly due

to di_cult-to-model wiring spring and friction forces.

expressing actual object accelerations in terms of desired accelerations is approximately

1.0005 0.0054
T = (7.13)

0.0015 1.0007

when neglecting the base accelerations. As was the case in the previous example, modeling

errors this small result in negligible endpoint errors when under feedback control.

Figure 7.7 shows experimental data similar to that presented in section 6.2, page 104. It

uses an identical dynamic model in the kinematics and inverse dynamics; but in the case, of
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Figure 7.7 the CT controller neglects robot base accelerations. The tracking performance

of this controller, like the full-model CT controller, is quite satisfactory, although object

orientation could be controlled more tightly with a better angular-rate sensor (as with the

full-model CT controller).

Comparisons between endpoint errors for full-model CT control and simplified-model

CT control are shown in figure 7.8. The errors visible are on the order of 4 mm peak-

to-peak for x and 10 mm peak-to-peak for y in both cases. This difference however is an

artifact of the vision sensor, not the controller: the vision sensor has different resolutions

in the x and y directions. Cyclic errors are primarily due to spring forces in the joints due

to wiring and tubing. There was no noticeable difference in the performance of the two

CT controllers.

7.5 Extremes in Mass Distribution

In order to truly see the limitations of simplified CT endpoint controllers on free-flying

robots it is necessary to have a rather unusual mass distribution: one where the robot

base mass is equal to or less than the manipulator's mass. In particular, the base mass

and inertia of the base must be low, and the mass distribution of the link nearest the base

must have little mass near the base. This unfavorable mass distribution results in large

base accelerations occuring in response to manipulator endpoint activity. The effects of

neglecting base accelerations over a range of base mass values for this fictitious class of

robot will be examined in simulation. This robot has nominal mass characteristics listed

in table 7.1.

Figure 7.9 shows the transformation matrix values (as shown initially in figure 7.2) over

a range of base masses. This ideally unity transformation matrix does undergo substantial

deviations from unity: at low base mass values there will be significant errors in real

versus commanded endpoint accelerations if the base accelerations are neglected in the CT

controller.

In addition, a measure of the condition number of the full free-flying augmented Ja-

cobian matrix is plotted in figure 7.10. The condition number of the Jacobian is bad for

both very small (200 g) and very large (40 kg) values of base mass, compared with the
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manipulator of 2 kg. When the condition number increases, the ratio of the largest singular

value of the matrix is substantially greater than the smallest. In practical terms, the base

accelerations are significantly larger than the manipulator's at small base mass values, and

the base accelerations are significantly smaller than the manipulator's at large base mass

values.
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Figure 7.9: Endpoint accelerations in Response to Commanded
Accelerations as a Function of Base Mass.

The inboard arm link has little mass at the shoulder, relying on the robot

bases mass and inertia to 'anchor' the manipulator. As the base effec-

tively disappears at low masses, the transformation matrix deviates sub-

stantially from unity.

It is evident from figures 7.9 and 7.10 that neglecting base accelerations divides into
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Figure 7.10: Condition Number of Augmented Jacobian as a

Function of Robot Base Mass.

Notice that the condition number of the Jacobian is bad for both very

low and very high base mass and inertia. With low base mass and inertia

the base accelerations are very high, and with large base mass and inertia

the base accelerations are very low.

three regimes for this class of robot: the first area is where the base mass and inertia are

very small compared to the manipulator; the middle ground is where the base mass is

comparable to that of the manipulator; and the rest is where the base mass is very large

in comparison with the manipulator. The performance of controllers that neglect base

accelerations operating in each of these regimes are discussed.

7.5.1 Very Small Base Mass and Inertia

At the extreme of zero base mass and moment of inertia, this free-flying manipulator de-

generates into a single body (it's forearm) onto which torque can be exerted. The endpoint

motion would not be controllable in all its degrees of motion. With small but non-zero

base mass and inertia values, the base accelerations will be large in response to manipu-

lator motions. Neglecting these accelerations will result in noticeable endpoint controller
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performance degradation. A simulation run of a robot with base mass 1 that of the ma-

nipulators (and correspondingly i!50the moment of inertia) is shown in figure 7.11. Small

endpoint motions do result in large base motions. The CT controller includes a feedback

section that has insufficient bandwidth to compensate for the motions commanded: the

feedforwaxd characteristics of CT control are being relied on.
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Figure 7.11: Robot with Light Base Mass Attempting Endpoint
Motion

When the robot base is very light (]_o the mass of the manipulator), the

ability of the manipulator to move its endpoint is very limited. Neglect-

ing base accelerations, as done in this controller, results in significant

endpoint error: it is necessary to include base accelerations in the con-
troller for such a robot.

The poor performance of the simplified endpoint CT controller shows that it is necessary
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to include the base accelerations in the model. The transformation matrix expressing actual

endpoint accelerations in terms of desired accelerations is approximately

[00T = (7.14)
0.4 1.8

The transformation matrix deviates substantially from unity, up to 80%. Acceleration

errors are well beyond the 5% acceptable as modeling error due to mass distribution un-

certainties.

7.5.2 Medium Base Mass and Inertia

When the base mass and inertia are larger than the manipulator but not significantly so,

it may or may not be necessary to account for base accelerations in the CT controller.

Figure 7.12 shows simulation of a robot with mass (2 kg) equivalent to the manipulator

(2 kg) performing endpoint motions. The base moves a fair amount in response to motions

of the manipulator.

The errors in endpoint tracking are small but noticeable. The transformation matrix

expressing actual endpoint accelerations in terms of desired accelerations is approximately

0.85 -0.25
T = (7.15)

0.08 1.15

The transformation matrix deviates substantially from unity - about 15-25%. Acceleration

errors are beyond the 5% acceptable as modeling error due to mass distribution uncertain-

ties, but may be acceptable if performance requirements are met.

7.5.3 Large Base Mass and Inertia

When the robot base mass and inertia are large compared to the manipulator(s), as has been

discussed in an earlier section and shown in two experiments, the base accelerations can be

neglected. Neglecting the base accelerations in the controller is not only advantageous, it

makes computation faster and numerically better conditioned (see figure 7.10 for Jacobian

condition number).

In summary, the results presented in sections 7.4.1 and 7.4.2, including the endpoint

controller performance prediction in figure 7.4, illustrate that for a practical space-based
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Figure 7.12: Robot with Medium Base Mass Attempting Endpoint
Motion

When the manipulator is as massive as the robot base, the ability of

the manipulator to move its endpoint is limited. Neglecting base ac-

celerations, as done in this controller, results in a noticeable endpoint

error: it may or may not be necessary to include base accelerations in
the controller for such a robot.
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robot - one containing propulsion, power, communication and control systems - it is not

necessary to include base accelerations in the CT controller.

7.5.4 Manipulating Massive Payloads from Free-flying Robots

In figure 7.3, the plot of the transformation matrix between actual and real endpoint

accelerations when neglecting base accelerations remains almost identically unity over a

very wide range of payload masses. This shows that the acceleration of the payload can be

controlled regardless of its mass. This does not imply, however, that the payload can be

moved very far. Action-reaction can make the robot move a lot compared to the payload,

and if no external forces or moments are applied to the robot body, the manipulators may

exceed their joint range of motion and/or approach singular configurations.

A terrestrial example of such a system is a tugboat pulling on a large ship with a

high-power winch. The ship can be made to accelerate by applying power to the winch.

However, if the tug's engines (external forces) are not engaged, the winch will cease to

be effective once the tug is pulled into the ship: external forces applied to the tug are

necessary to maintain it at a reasonable operating distance.

Another example is a robot holding a comparably sized payload at "arm's length".

While it is possible for the robot to push or pull on the object, it is not able to move it

sideways very far without some kind of external moment to prevent the base of the robot

from rotating out of range of the manipulator arms.

7.6 Summary

In this chapter, the consequences of neglecting the base accelerations in the CT controller of

a free-flying robot were investigated. Base accelerations and base angular velocity are what

differentiate fixed-base CT controllers from full-model free-flying robot CT controllers.

A space robot designer would be prudent to include base angular velocity compensa-

tion in the CT model, since it compensates for the substantial nonlinear inertial forces

introduced by base angular velocity - and costs little to include.

The effects of neglecting robot base accelerations over a range of robot/payload mass-

distributions were also examined. In only extreme cases - where the robot base and upper
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arm had small mass and inertia compared to the forearm - did base accelerations play

a significant role in assuring accurate control. The mismodeling due to neglecting base

accelerations was frequently found to be significantly less than that due to uncertainty in

the mass distribution (mass and inertia) in the robot (typically on the order of 5%).

The automated CT control computer program (R,D) developed in chapter 4 was used

to show that base accelerations played a minimal role in these and other control systems.

This program can also be used to further investigate other manipulator configurations and

robot/payload mass distributions to answer questions about the performance of specific

systems not covered here.

Two experimental demonstrations of a free-flying robot moving its manipulators and

moving a grasped object serve as examples to show that including base-accelerations in

the manipulator CT controller may not be necessary. The endpoint controllers showed no

noticeable change in performance when neglecting robot base accelerations. The savings

in computations offered by neglecting base accelerations, combined with the negligible per-

formance degradation under certain conditions make it a practical and beneficial technique

for assuring high-performance endpoint control at reasonable computational cost.
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Base Mass

Base Inertia about c.m.

Vector to c.m.

Vector to Shoulder

2.0 kg

0.1 kg-m 2

0.0, 0.0 m

0.25, 0.0 m

Lower Arm Mass 1.0 kg

Lower Arm Inertia about c.m. 0.01 kg-m 2

Vector to c.m.

Vector to Elbow

Upper Arm Mass

Upper Arm Inertia about c.m.

Vector to c.m.

Vector to Endpoint

Payload Mass

Payload Inertia about c.m.

Vector to c.m.

0.5, 0.0 m

1.0, 0.0 m

1.0 kg

0.03 kg-m 2

0.0, 0.0 m

1.0, 0.0 m

1.0 kg

0.01 kg-m:

0.0, 0.0 m

Table 7.1: Nominal Mass Distribution in a Fictitious Robot

Vectors are expressed along local x and y axes: the x axis points toward the

next joint. The configuration studied places the shoulder angle nominally

at -45 deg and the elbow at 90 deg.
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Conclusions

8.1 Summary

A new method for integrating momentum control into computed-torque controllers has been

introduced: it places momentum into an augmented Jacobian matrix (equation 3.1). This

both simplifies the process of constructing a square Jacobian matrix for computed torque,

and reduces the amount of computation needed to solve the problem when compared to

the Generalized Jacobian technique of Umetani and Yoshida.

This idea has also been applied to dynamic constraints, such as closed-chain constraints,

by augmenting the Jacobian with a very simple constraint relation. Similar benefits result:

simpler construction of the Jacobian matrix, and fewer required computations. A major

benefit of this approach, when used with constrained dynamic systems, is that it is not

necessary to formulate constrained equations of motion for the computed-torque controller.

By using the Jacobian augmentation approach, the computed-torque formulation ex-

tends naturally to free-flying and closed-chain robot configurations.

In addition, a new method for formulating equations of motion for simulation of con-

strained dynamic systems was presented. These simulation equations (equations 2.45)

ensure that constrained systems converge on a consistent state despite small initial state

errors, via numerical relaxation. The buildup of numerical error ( a violation of constraints)

is also prevented.

A recursive algorithm for calculating kinematic quantities for rigid multibody robots
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was presented. Elements of the Jacobian matrix and the inverse dynamics were expressed

in terms of partial velocities. This algorithm was implemented as a computer program

(RD). It automatically recursively calculates the terms in and solves the Jacobian equation

and evaluates the motor torques in a Newton-Euler inverse dynamics routine. Using this

program, it is possible to implement a controller simply by specifying the dynamic system,

the desired quantities in the Jacobian equation, and any unmeasured signals that need to

be calculated. No hand derivations are required. This powerful tool may be used both as

a real-time controller and also as a dynamics and control simulation tool.

A laboratory robot was designed and constructed 1 to act as a testbed for evaluating

control systems. This robot, like NASA's proposed Orbital Maneuvering Vehicle, has a

large base body flying freely 2, housing power and propulsion systems, and having two

lightweight cooperating robot arms for manipulation.

The RD program was used to implement independent arm endpoint control and also

cooperative-arm object manipulation. IR.D was also used to simulate the behavior of these

multibody systems. Full free-flying multibody dynamic models were used in experimental

demonstrations of endpoint control of a free-flying robot with two arms. Arm endpoint

control and cooperative-arm object control were demonstrated.

An experimental examination of the effects of neglecting free-flying robot base accelerations 3

in an endpoint feedback controller was made. In the physical systems examined, this sim-

plification offers little degradation in system performance in exchange for a large savings

in computation (robot base angular velocity was needed to compensate for the nonlinear

effects of base rotation, and cost little in computation). Further simulations were used to

explore over what range of situations this would be valid: i.e. where the errors due to

mismodeling resulted in errors of accelerations of less than 5%. These errors are further

reduced if within the bandwidth of the feedback control system. The interesting result is

that this simplification is valid over a very large regime. A tool such as B.D is both very

useful and necessary for investigating specific systems: it is difficult to generalize results

in nonlinear systems.

1with Marc UIlman
2Flying freely in two dimensions.
abase accelerations were neglected, not angular motions. Angular velocity needs to be included in order

to compensate for centripetal forces.
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8.2 Recommendations for Further Research

While several aspects of endpoint control from a free-flying robot were examined in this

thesis, they have all dealt with the robot in pure free flight: no external momentum control

devices were used. Even although it was shown that manipulator control and object manip-

ulation are possible from a free-flying robot with no momentum control, it is very evident

from both simulation and experiment that the workspace of the manipulators can easily

be exceeded, due either to initial motion, or to activities of the manipulators. Providing

simultaneous control of the base motions via reaction wheels and/or thrusters would allow

the robot to maintain its workspace.

The methods presented here for simplifying the formulation of computed-torque con-

trollers reduce the amounts of computation over previously discussed methods; however, it

is still computationally expensive O(n 3) to invert the Jacobian equation in order to solve

the control problem. Inversion is a numerically expensive process. In newer dynamics

simulation tools [27] and techniques [25], [26], it is possible to perform dynamic system

simulation in order n computations. Extending this work to solve the related but differ-

ent problem of computed-torque control would be of considerable benefit to the controls

community, offering numerical solutions for large dynamic systems at less computational

cost.

Inorderfora computed-torque controllertofunctionpredictably,itisimportant tohave

a good model ofthe payload,which isfrequentlyquitemassive compared to the manipula-

tors.Itisfarbetterto underestimatethe mass parameters and get a slowcomputed-torque

controllerthan to overestimateand get effectivelyhighererror-controllerg_n valuesthat

can cause the system to become underdamped and possiblyunstable.An adaptive con-

trollerthat allowedprogressiveestimationof the payload mass would be a valuableasset

to a space robot.



Appendix A

Power and Energy Expressions

A.1 Kinetic Energy

In a dynamic system of v bodies as under discussion, the kinetic energy can be expressed

as:

K
2 i=l

1 v 1 _'

= _ _ mivi., v i. + _ _ _,i. ii/i.. _i
"---- i----1

(5](5)1 mi i. i.
---- -- V r Ur " V$ _$
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2

(A.1)

A.2 Power

The power input is due to work done by the actuators (arm torquers), and forces exerted

on the manipulator endpoints during contact with external objects. The power input into
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a system of u bodiesas under discussioncan be expressedas follows:

P = _ F Applied. v _- Z TApplled "_

Applied Applied

ForceJ Torques

n

2_ Z FApplled'ZVr_/r+ Z TApplied'Z_'_r"r

Applied r=l Applied r--.._ I

Forces Torques

+
r_1 d Applied

Torquel

r----1

= FTu

n)TApplied " Z _'_rUr

r=l

This is an simple and intuitively pleasing result.

(A.2)

A.3 Nonlinear Terms

The nonlinear terms have a simple relationship with the mass matrix that can be shown

by evaluating power input to the system:

P = FTu

:IFTu+luT F

= ½(M_+N,,)+',,+I_(M_+N,,)

: 1+_+1++_+1o+_+1+_.

but power is also

P = luTMu
2

= luTMi_+li_TMu+luTI_u

and examining the difference, it is clear that

(A.3)

(A.4)

M = N+N T
A+3,A.4

(A.5)
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This result shows that the derivative of the mass matrix is symmetric, even if the

nonlinear terms are not - which tends to be the case. Furthermore, if the mass matrix is

constant, then

0 = N ÷ N T (A.6)
A.3

and the nonlinear matrix must be skew symmetric.
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Appendix B

Circuit Diagrams

This appendix contains circuit diagrams for various subsystems of the satellite robot model.

The following circuits are documented here:

• The Power Control Board

• The Battery Charging Board

• The Safety Disconnect Board

• The Inertial/Global Position Sensor Interface Board

The experimental vehicle also contains interface boards that are common to other

experimental hardware in the Stanford Aerospace Robotics Laboratory. These circuits are

not documented here.

• The Motor Driver Board (delivers commanded current to motor)

• The RVDT Board (provides angle and rate estimate)

• The Force Sensor Board (provides force estimate)

B.1 Power Control Unit

The power control unit provides basic control functions for power on the vehicle. The

master power switch (figure B.1) controls all power to the analog and computer circuits.
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When off, the only thing that will operate are the battery chargers. When on, external

power (figure B.2), if connected, will be engaged onto the main power bus. If external power

is not applied, switches along the front panel allow batteries to be individually engaged

onto the power bus (figure B.3).

LEDs indicate whether batteries are available, and whether they are engaged onto the

power bus. It is possible for the on-board computer to determine whether or not batteries

are engaged via TTL level output signals provided via opto-couplers. Provision also exists

for the computer to control the batteries using TTL level signals.

The two tiny red LED's indicate when the power bus is asymmetrical: this can occur

if batteries are discharged, battery fuses are blown, or external power is not correctly

connected.' Battery fuses are located on the battery board. The circuit board connector

pinout is documented in figure B.4.

B.2 Battery Charging and Monitoring

This circuit provides battery charge capability on-board the robot. When external power

is connected, the batteries will charge in a manner determined by the settings of the charge

switch (figure B.5).

Batteries can be charged by external power while engaged onto the power bus. Signals

available to the computer include "battery voltage and current, both during charge and

discharge.

Green LEDs on the front panel indicate the relative amount of current being drawn

from the battery, their brightness is proportional to the discharge current: bright green is

10 A. An LED is provided for each of the two 12 V batteries making up a + 12V power

source.

Red LEDs on the front panel indicate the relative amount of current with which the

battery is being charged: dim is about 150 mA, medium is about 700 mA, and bright is

about 1.5 A.

There are two fuses per battery: a charge fuse to limit charge current to 2A, and a

discharge fuse to limit discharge current to 15A. If the discharge fuses blow (typically one

goes, the other doesn't), one of the bus fault LEDs on the PCU will activate. If the charge
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fuses blow, the batteries won't charge. A problem with the current design is that the charge

fuses will tend to blow if batteries are plugged in while external power is connected.

B.3 LEDs and Inertial Sensors

The robot has marker LEDs visible from above so that the vision system system can track

the two arm endpoints. The endpoint LED's are powered via resistors on a circuit board

devoted to miscelaneous functions (figure B.6.

The angular rate sensor provides a measurement of the angular rate of the robot's base

body. It requires some filtering before conversion to digital form in order to avoid aliasing,

and also to remove the substantial amount of noise occuring above 10 Hz.

B.4 Safety Disconnect Board

The robot has a safety cutout circuit that disconnects the motors and thrusters from tile

computer: effectively preventing the robot from doing anything. It operates in one of two

modes: one that indicates that the user trusts the computer, and the other mode where

the user does not trust the computer. This mode is set by the one on/off switch on the

board: up trusts the computer, down does not. There are two push button switches - the

lower one activates the safety system, turning on the relays if the computer heartbeat is

active, and the upper switch kills the system. An external kill switch can also be connected

to the robot via a smal/plug located near the external power connector.

If the computer can be trusted, then the heartbeat signal coming from the computer

(a square-wave signal at about 30 Hz) will activate all the relays in the system, making it

live. It can be killed via user control (the kill switch), but will be dead only as long as the

switch is held. The computer heartbeat can be disabled (in software) to achieve the same

effect. This mode is typically used once things axe working well.

If the computer (or controller) is not to be trusted, then the user must activate the

safety system manually using the lower push button. The system can be killed by pushing

the kill switch (or the external kill switch). It will not automatically reactivate. This mode

is typically used when first testing out controllers.
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The circuit diagram is shown in figure B.7.
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Appendix C

RD Computer Software

The interfaces to the RD software package are documented here:

• The C language interface specification

• The Matlab interface specification

The following components of the RD software package C source code are documented

here:

• The Evaluation of Kinematics

• The Evaluation of Dynamical Equations of Motion

the following components are not included, but can be obtained from the author:

• The Input File Parser

• The Initialization of Data Structures

• The Construction of the Jacobian Equation

• The Matrix Inversion Solution

• The C Library Interface Implementation

• The Matlab Interface

163
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C.1 C Language Interface Specification

This interface specification comes from the include file rd.h.

/*

* @(#)rd.h generated by: makeheader

,

* built from: robot2d.h

* rd.c

* print, c

*/

Thu Aug 23 15:02:50 1990

#ifndef rd_h

#define rd_h

typedef struct ROBOT_STRUCTURE ROBOT;

typedef struct RD_SIGNALSET_STRUCTURE

int n;

char **names;

char **units;

int **isValid;

float **values;

} RD_SIGNALSET;

/* number of entries */

/* names of entries */

/* units of entries */

/* pointer to array of ptrs to logical */

/* pointer to array of ptrs to entries (USER) */

typedef struct RD_DATASET_STRUCTURE

{

char *name; /*

char *filename; /*

ROBOT *robotP; /*

user supplied name

configuration filename

internal robot data structure

(USER)

int p;

int c;

int n;

/* number of degrees of freedom

/* number of constraints

/* number of generalized coords (p+c)

RD_SIGNALSET genCoords; /* Generalized Coordinates

I* number of coords

/* names of coords

/* units of coords

/* array of pointers to coords (USER)

RD_SIGNALSET genCoordsDot; /* Generalized Coordinate Rates

/* number of coords

*/
*/
*/

*/
,/
*/

*/
*/
*/
*/
*/

*/
*/
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RD_SIGNALSET

RD_SIGNALSET

RD_SIGNALSET

int

RD_SIGNALSET

RD_SIGNALSET

RD_SIGNALSET

} RD_DATASET;

/* names of coords */

/* units of coords *I

I* array of pointers to coords (USER) *I

genCoordsDotDot; /* Generalized Coordinates Accel */

/* number of coords *I

/* names of coords *I

/* units of coords */

I* array of pointers to coords (USER) *I

genForces; I* Generalized Forces *I

I* number of forces *I

I* names of forces */

/* units of forces *I

/* array of pointers to forces (USER) *I

controls; I* Controls */

I* number of controls */

/* names of controls */

/* units of controls */

/* array of pointers to controls (USER) */

singul ar; /* solution for controls singular? */

inputs; /* Inputs *I

I* number of inputs *I

I* names of inputs *I

/* units of inputs */

/* array of pointers to inputs (USER) */

outputs;

dynOurputs;

/* Outputs */

/* number of outputs */

/* names of outputs */

/* units of outputs */

/* array of pointers to outputs (USER) */

/* Outputs */

/* number of dynamic outputs */

/* names of dynamic outputs */

/* units of dynamic outputs */

/* array of pointers to dynOutputs(USER) */
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,/

Interface To Recursive Dynamics and Control Package

Language : ANSI C, with makeheader and personal extensions

Author : Ross Koningstein

Date : 14 Feb 90

Purpose : This set of routines provides a generic interface to the

Recursive Dynamics (RD) package for Computed Torque control

of rigid body systems.

/* RDCreateRobot

name : a string which is your name for this controlled system

filename : a string which is the filename of the file which contains

the configuration information.

verbose : !=0 -> verbose on file read

==0 -> not verbose

- This procedure creates data structures for a robot dynamical

model. It accepts a filename for a configuration file, and will open

this file, read its contents, and close it.

- Data interface with user procedures occurs throught the returned

dataset: values may be read out of or written into this set. The dataset

contains all the information used by all other _RD _ functions.

returns : pointer to dataset -> okay

NULL -> problem with config file.

*/

extern RD_DATASET *RDCreateRobot( char *name, char *filename, int verbose );

/* RDKinematics

RDDataSet : dataset for controlled system.

- kinematics terms evaluated

- output terms (position, velocity) are valid after this

procedure has completed.

returns : !ffiO -> okay

=ffiO -> dataset 'q',_qDot _ pointers are NULL

*/

extern int RDKinamatics( RD_DATASET *RDDataSet );



C.1. C Language Interface Specification
167

/* RDJacobian

RDDataSet : dataset for controlled system.

- Jacobian equation numerically formed

returns : !=0 -> okay

==0 -> dataset 'specs _ pointer is NULL

*/
extern int RDJacobian( RD_DATASET *RDDataSet );

/* RDComputedTorque

RDDataSet : dataset for controlled system.

- Jacobian equation evaluated

- Jacobian equation solved for generalized accelerations

(ERROR) singularity in Jacobian equation

- inverse dynamics used to compute joint torques

returns : !=0 -> okay

==0 -> singularity (all joint torques, forces = 0 )

==0 -> *or* dataset _Q_ pointer is NULL

*/

extern int RDComputedTorque( RD_DATASET *RDDataSet );

/* RDDynamics

RDDataSet : dataset for simulateded system.

- Dynamics equation numerically formed

returns : !=0 -> okay

==0 -> dataset 'Q' pointer is NULL

*/

extern int RDDynamics( RD_DATASET *RDDataSet );

/, RDStateDerivative

RDDataSet : dataset for simulateded system.

- Dynamics equation numerically solved

returns : !=0 -> okay

=ffiO -> dataset 'specs' pointer is NULL

*/
extern int RDStateDerivative( RD_DATASET *RDDataSet );

/* EDEnergy

RDDataSet : dataset for system.

- FIRST do Kinematics using state

- AND Dynamics equation must be formulated
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- THEN this routine can be used Zo determine the energy in the system

returns : !ffiO -> okay

==0 -> dataset 'specs _ pointer is NULL

*/

extern double RDEnergy( RD_DATASET *RDDataSet );

/* RDChangeMass

RDDataSet : dataset for system.

BodyName : name of body.

mass : new mass value for body.

- change mass of a body - allow for different dynamics

returns : !ffiO -> okay

==0 -> dataset 'specs' pointer is NULL

*/

extern int RDChangeHass( RD_DATASET *RDDataSet, char *bodyName, double mass );

/* RDChangeInertia

RDDataSeZ : dataset for system.

BodyName : name of body.

mass : new inertia value for body.

- change inertia of a body - allow for different dynamics

returns : !ffiO -> okay

==0 -> dataset 'specs' pointer is NULL

*/

extern int RDChangeInertia( RD_DATASET *RDDataSet,

char *bodyName, double inertia );

/* RDPrintCoords

RDDataSet : dataset for controlled system.

- prints generalized coordinate names and values to stdout.

*/

extern void RDPrintCoords( RD_DATASET *dataP );

/* RDPrintForces

RDDataSet : dataset for controlled system.

- prints generalized forces' names and values to stdout.

*/

extern void RDPrintForces( RD_DATASET *dataP );

/* RDPrintControls

RDDataSet : dataset for controlled system.

- prints control specification names and values to stdout.
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,/
extern void RDPrinzControls( RD_DATASET *dataP );

/* RDPrintInputs

RDDataSet : dataset for controlled system.

- prints input signal names and values to stdout.

*/

extern void RDPrintInputs( RD_DATASET *daZaP );

/* RDPrint0utputs

RDDataSet : daZaseZ for controlled system.

- prints output signal names and values to stdout.

*/

exZern void RDPrint0utputs( RD_DATASET *daZaP );

/* RDPrinZDyn0utputs

RDDataSet : dataset for controlled system.

- prints dynamic output signal names and values to stdout.

*/

extern void RDPrintDyn0utputs( RD_DATASET *dataP );

/* RDPrintJacobian

RDDataSet : dataset for controlled system.

- prints Jacobianmatrix equation to stdout.

*/
extern void RDPrintJacobian( RD_DATASET *dataP );

/* RDPrintDynamics

RDDataSet : dataset for controlled system.

- prints inertia (mass) matrix equation to szdout.

*/

extern void RDPrintDynamics( RD_DATASET *dataP );

#endif /* rd_h */
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C.2 Matlab Interface Specification

This interface specification comes from the matlab include file rdh.m, which should be run

prior to calling any RD functions from within Matlab. It sets up aJl the function codes

(e.g., RDINIT) that are used to access RD routines.

X' RD function references

x

X Ross Koningstein

Recursive Dynamics Package for Matlab

X

initialize a system: reads in a configuration file

[ns,ni,no,ndo,nc] = rd( RD_INIT, modelNumber, 'filename' );

RD_INIT = 1;

do kinematics: uses model and state

X sets up partial velocities, computes outputs

outputs = rd( RD_KINEMATICS, modelNumber, state );

RD_KINEMATICS ffi2;

X formulate Jacobian equation (for CT control)

X [] = rd( RD_JACOBIAN, modelNumber, controls);

RD_JACOBIAN = 3;

X perform CT control: solve for accelerations and then torques

X [actuators,dynoutputs] = rd( RD_COMPUTED_TORQUE, modelNumber );

RD_COMPUTED_TORQUE = 4;

setup dynamics equation (Nu_dot = -Nu + tau)

[] ffird( RD_DYNAMICS, modelNumber, actuators );

RD_DYNAMICS ffi 5;

X solve simulation equations for state derivative

X [state_deriv, dynOutputs] ffi rd( RD_SIMULATION, modelNumber )';

KD_SIMULATION ffi6;

X evaluate energy, given dynamics equation

X energy ffi rd( RD_ENERGY, modelNumber );

RD_ENERGY ffi7;

Z print generalized coordinates (with names)
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[] = rd( P_D_PRINT_COORDS, modelNumber );

RD_PRINT_COORDS ffi8 ;

7.print generalized forces (with names)

X [] = rd( RD_PRINT_FORCES, modelNumber );

RD_PRINT_FORCES ffi9;

X print output signals (with names)

7. [] ffird( RD_PRINT_OUTPUTS, modelNumber );

RD_PRINT_DUTPUTS = 10;

_.print dynamic output signals -- accelerations (with names)

_. [] = rd( RD_PRINT_DYN_OUTPUTS, modelNumber );

RD_PRINT_DYN_OUTPUTS = 11 ;

print Jacobian equation J ud ffi- Jd u ÷ Ades

X [] = rd( RD_PRINT_JACOBIAN, modelNumber );

RD_PRINT_JACOBIAN = 12;

print Dynamics equation Mud = - N u ÷ F

X [] = rd( RD_PRINT_DYNAMICS, modelNumber );

RD_PRINT_DYNAMICS = 13;

X change parameters in dynamical model

X change the mass of a body

mass = rd( RD_CHANGE_MASS, modelNumber, bodyName, mass );

RD_CHANGE_MASS = 14;

change the inertia of a body

inertia = rd( RD_CHANGE_MASS, modelNumber, bodyName, inertia );

RD_CHANGE_INERTIA = 15;

change the location of a point on a body

location = rd( RD_CHANGE_MASS, modelNumber, pointName, location );

RD_CHANGE_LOCATIDN = 16;

get parameters of dynamical model

X get the mass of a body

mass = rd( RD_GET_MASS, modelNumber, bodyName );

RD_GET_MASS = 17;

get the inertia of a body

inertia = rd( RD_GET_INERTIA, modelNumber, bodyName );

_D_GET_INERTIA = 18;

get the location of a point on a body

location = rd( RD_GET_LOCATION, modelNumber, pointName );

RD_GET_LOCATIDN = 19;
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get system matrices so you can toy around with them

X get Jacobianmatrix

X Jacobian = rd( RD_GET_JACOBIAN, modelNumber );

RD_GET_JACOBIAN = 20;

get Mass matrix

MassMatrix = rd( RD_GET_DYNAMIC$, modelNumber );

RD_GET_DYNAMICS = 21;
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C.3 Evaluation of Kinematics

This ANSI C source code comes from the file kin.c. It covers the initialization routines,

including the recursive routines that evaluate mass sums in kinematic chains for 2D systems.

Kinematics evaluation is also a recursive routine. It effectively uses partial velocities from

the previous link and modifies individual partials according to its articulation.

FORWARD KINEMATICS

Language

Author

Date

Purpose

,/

: C with personal macro extensions

: Ross Koningstein

: 15 Jan 89

: These routines calculate all of the partial velocities

and their derivatives for (v,w,L,H).

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include "c. ext"

#include "robot2d.h"

#include "vec_math2d.h"

#include "functions.h"

/* local function prototypes */

void KinPrelim( ROBOT *robotP, DLIST_ELEMENT *bodyListP, integer layer );

double MassSum( DLIST_ELEMENT *bodyListP );

void Kinematics( ROBOT *robotP, BODY *Bodyp, integer layer );

void KinematicsInit( ROBOT *robotP, integer verbose )

register BODY *inertialP = robotP->bodyP;

register integer j;

if ( verbose )

printf("RD> Kinematics init of order Zd system\n", robotP->order );

/* inertial start point and base: orientation never changes */

inertialP->bl.x = 1.0; inertialP->bl.y = O.0;
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inertialP->b2.I ffi0.0; inertialP->b2.y = 1.0;

vec_zero2d(_inertialP->rO) ;

vec_zero2d(&inertialP->vO) ;

robotP->massSum- 0.0;

inertialP->genSpd = NO_GENSPD;

for ( jffiO;j<robotP->order; j++ )

{

/* partial velocities */

vec_zero2d(_inertialP->v[j]) ;

vec_zero2d(_inerZialP->vd[j]) ;

vec_zsro2d(RinertialP->vcm[j]) ;

vec_zero2d(_inerZialP->vcmd[j]) ;

inertialP->mSum[j] = 0.0;

/* zero out partial momenta */

for ( jffiO;j<robotP->order; j+÷ )

{

roboZP->H[j] = 0.0;

robotP->Hd[j] = 0.0;

robotP->L[j].x = 0.0;

robotP->L[j].y = 0.0;

robotP->Ld[j].x = 0.0;

robotP->Ld[j].y = 0.0;

}

if ( verbose )

printf("\nKinematics partial velocity dependencies\n");

KinPrelim( roboZP, inertialP->ouZboard, 0 );

if ( verbose )

printf("\nKinematics partial linear momentum dependencies\n");

MomPrelim( robotP, inertialP->outboard, 0 );

}

if ( verbose )

{

printf ("done\n") ;

prinZf (" ......................................................... \n") ;

>

void KinPrelim( ROBOT *roboZP, DLIST_ELEMENT *bodyListP, integer layer )

{
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integer r;

integer s;

BODY *bodyP;

/* do until end of chain */

while ( bodyListP )

bodyP = bodyListP->bodyP;

/* update local endpoint, cm partial velocities, and derivatives */

if ( bodyP->jointType is DISCONNECTED_JOINT )

r = bodyP->genSpd;

for( s=O; s<robotP->order; s++ )

vec_zero2d( RbodyP->v[s] );

vec_zero2d( &bodyP->vcm[s] );

/* setup (constant) partial velocities for base */

vec_copy2d( RbodyP->v[r-2], &robotP->bodyP->bl );

vec_copy2d( &bodyP->vcm[r-2]. &robotP->bodyP->bl );

vec_copy2d( RbodyP->v[r-l], &robotP->bodyP->b2 );

vec_copy2d( RbodyP->vcm[r-l], &robotP->bodyP->b2 );

if ( bodyP->bodyType is LINK ) then

/* do other branches in tree */

KinPrelim( robotP, bodyP->outboard, layer+l );

bodyListP = bodyListP->listP;

void MomPrelim( ROBOT *robotP, DLIST_ELEHENT *bodyListP, integer layer )

register integer s;

register BODY *bodyP;

register BODY *inBodyP;

/* use partial velocity dependencies to simplify momentum calculation */

while ( bodyListP is_not NULL ) then

<

bodyP = bodyListP->bodyP;
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>
)

inBodyP = bodyP->inboard;

if ( bodyP->bodyType is LINK ) then

{

/* free flying robot mass sum */

robotP->massSum+= bodyP->mass;

if ( bodyP->jointType is DISCONNECTED_JOINT ) then

{

s = bodyP->genSpd;

/* add all mass with this partial velocity in this chain */

bodyP->mSum[s-1] = bodyP->mass + MassSum( bodyP->outboard );

bodyP->mSum[s-2] = bodyP->mSum[s-l];

/* setup (constant) linear momentum terms for x,y */

vec_scale2d( &robotP->L[s-2],bodyP->mSum[s-2],_bodyP->v[s-2] );

vec_scale2d( _robotP->L[s-l],bodyP->mSum[s-l],&bodyP->v[s-1] );

/* Ld terms here are zero */

}
else

{

s = inBodyP->genSpd;
if ( s is_not NO_GENSPD ) then

{

/* add mass with this partial velocity in this chain */

bodyP->mSum[s] = bodyP->mass÷MassSum( bodyP->outboard );

}

)

MomPrelim( robotP, bodyP->outboard, layer+1 );

)

bodyListP ffi bodyListP->listP;

double MassSum( DLIST_ELEMENT *bodyListP )

{

BODY *bodyP;

double mass;

mass = 0.0;

/* if bodies have mass, and same partial velocity, add mass */

while ( bodyListP is_not NULL )
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].

-C

bodyP = bodyListP->bodyP;

mass += bodyP->mass + MassSum( bodyP->outboard );

bodyListP = bodyListP->listP;

)

return mass;

void KinsmaticsEval( register ROBOT *robotP )

register integer

double invMass;

VECTOR *Lr, *Lrd;

double *Hr, *Hrd;

double *U;

DLIST_ELEMENT *listP;

j;

for ( j=2; j<robotP->order; j++ )

robotP->L[j].x = 0.0;

roboZP->L[j].y = 0.0;

robotP->Ld[j].x = 0.0;

robotP->Ld[j].y = 0.0;

)

robotP->Rcm.x = 0.0;

robotP->Rcm.y = 0.0;

listP = robotP->bodyP->outboard;

while ( listP )

Kinematics( robotP, listP->bodyP, 0 );

listP = listP->listP;

/* Calculate Momentum Terms if robot is Free-Flying */

/* get robot's center of mass position */

invMass ffi1.0/robotP->massSum;

vec_scale2d( &robotP->Rcm, invMass, &robotP->Rcm );

/* evaluate linear momentum(<-FIX!), angular momentum */

robotP->Hcm = 0.0;

robotP->Lcm.x = 0.0;

robotP->Lcm.y ffi0.0;

Lr = &robotP->L[2];
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Hr = _robotP->H[2];

U = _robotP->u[2];

for ( j=robotP->order-2; j>O; j-- )

vec_incr_sca2d( RrobotP->Lcm, *U, Lr );

robotP->Hcm += (*Hr÷+) * (*U);

Lr++; U++;

}

vec_scale2d( _robotP->Vcm, invMass, &robotP->Lcm );

/* correct angular momentum to center of mass (from Inertial 0,0) */

Lr = RrobotP->L[2] ;

Lrd = RrobotP->Ld[2];

Hr = &robotP->H[2] ;

Hrd = RrobotP->Hd[2] ;

for ( j=robotP->order-2; j>O; j-- )

*Hr -= vec_cross2d( &robotP->Rcm, Lr );

*Hrd -= vec_cross2d( _robotP->Vcm, Lr )

+ vec_cross2d( RrobotP->Rcm, Lrd );

Hr÷÷; Hrd÷+; Lr++; Lrd+÷;

>

void Kinematics( ROBOT *robotP, register BODY *bodyP, integer layer )

register integer

register BODY

register integer

VECTOR pv;

VECTOR rm;

double sq,cq;

DLIST_ELEMENT *bodyListP;

JOINT_TYPE

r ffibodyP->genSpd;

*inBodyP = bodyP->inboard;

s ffiinBodyP->genSpd;

jointType ffibodyP->jointType;

/* Relative and Absolute position and velocity of startpoint */

vec_coord2d( _bodyP->r, _bodyP->start, _inBodyP->bl, _inBodyP->b2 );

vec_add2d( _bodyP->rO, _inBodyP->rO, _bodyP->r );

vec_copy2d( _bodyP->rOCalc, _bodyP->rO );

if ( bodyP->rOIsMeasured ) then

{

vec_copy2d( _bodyP->rO, _bodyP->rOMeasured );
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if ( jointType is DISCONNECTED_JOINT )

{

vec_incr_sca2d( EbodyP->rO, robotP->q[r-2], RinBodyP->bl );

vec_incr_sca2d( RbodyP->rO, robotP->q[r-1], RinBodyP->b2 );

vec_scale2d( &bodyP->vO, robotP->u[r-2], _inBodyP->bl );

vec_incr_sca2d( _bodyP->vO, robotP->u[r-l], RinBodyP->b2 );

}

else

{

integer nBytes = robotP->order * sizeof(VECTOR);

vec_copy2d( _bodyP->vO, &inBodyP->vO );

vec_partial2d( &pv, _bodyP->r );

vec_incr_sca2d( &bodyP->vO, robotP->u[s], &pv );

/* Partial Velocities, and PV Derivatives of startpoint

memcpy( RbodyP->v, RinBodyP->v, nBytes );

memcpy( RbodyP->vd, &inBodyP->vd, nBytes );

memcpy( &bodyP->vcm, &inBodyP->vcm, nBytes );

memcpy( RbodyP->vcmd, RinBodyP->vcmd, nBytes );

,/

/* revolute joint - start partial velocity (create local vr) */

vec_copy2d( RbodyP->v[s], Rpv );

/* rotary joint - start partial velocity derivative */

vec_deriv2d( RbodyP->vd[s], _bodyP->v[s], robotP->u[s] );

}

/* base - calculate local [bl, b2] based on rotation and translation */

if ( bodyP->bodyType is LINK )

{

if ( bodyP->object ) then

{

BODY *constraintP;

VECTOR dr,dr;

double magRSq, magR;

VECTOR pvc;

/* estimate body orientation and rate */

constraintP = bodyP->constraintPoint;

/* I) get difference in endpoint positions */

vec_copy2d( _dr, &constraintP->constraintBody->rO );
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vec_decr2d( tdr, &bodyP->rO );

/* 2) normalize this distance */

magRSq = vec_dot2d( _dr, _dr );

magR = sqrt( magRSq );

vec_scale2d( tdr, 1.0/magR, _dr );

vec_copy2d( &constraintP->rho, _dr );

constraintP->length = magR;

I* 3) rotate this vector by -phi to get bl *I

bodyP->bl.x = constraintP->cPhi * dr.x

- constraintP->sPhi * dr.y;

bodyP->bt.y = constraintP->sPhi * dr.x

+ constraintP->cPh£ * dr.y;

/* 4) determine b2 from bl */

bodyP->b2.x = -bodyP->bl.y;

bodyP->b2.y = bodyP->bl.x;

/* 5) rotate bl by inboard (-)bl,b2 to get cq,sq */

cq = inBodyP->bl.x * bodyP->bl.x + inBodyP->bl.y * bodyP->bl.y;

sq = inBodyP->b2.x * bodyP->bl.x + inBodyP->b2.y * bodyP->bl.y;

/* 6) determine q using arctan 4 quadrant */

robotP->q[r] • atan2( sq, cq );

bodyP->angle = robotP->q[r];

/* 7) get difference in endpoint velocities */

vec_copy2d( _dv, tconstraintP->constraintBody->vO );

vec_decr2d( &dv, &bodyP->vO );

/* 8) use partial velocity to determine rate */

vec_deriv2d( _pvc, kconstraintP->rho, magR );

robotP->u[r] = vec_dot2d( _dv, &pvc ) / magRSq;

robotP->qDot[r] ffirobotP->u[r] - robotP->u[inBodyP->gsnSpd];

bodyP->angleRate • robotP->qDotEr];

)

else

{

bodyP->angle = robotP->q[r] ;

bodyP->sngleRate = robotP->qDot[r] ;

if ( jointType is DISCONNECTED_JOINT) then

{

robotP->u[r] = bodyP->angleRate;

robotP->u[r-1] = robotP->qDot [r-1] ;

robotP->u[r-2] ffirobotP->qDot[r-2] ;

Y
else

{
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)

}

robotP->u[r] = bodyP->angleRate + robotP->u[s];

}

/* rotate inboard body vectors by angle */

sq ffi sin( bodyP->angle );

cq = cos( bodyP->angle );

/* calculate bl vector */

bodyP->bl.x fficq * inBodyP->bl.x ÷ sq * inBodyP->b2.x;

bodyP->bl.y = cq * inBodyP->bl.y + sq * inBodyP->b2.y;

/* calculate b2 vector */

bodyP->b2.x = - bodyP->bl.y;

bodyP->b2.y = bodyP->bl.x;

/* Relative and Absolute position, Partial Velocities,

and Partial Velocity Derivatives of center of mass */

if ( bodyP->bodyType is LINK ) then

{

vec_coord2d( _bodyP->rcm, &bodyP->cm, &bodyP->bl, &bodyP->b2 );

vec_add2d( _bodyP->rOcm, &bodyP->rO, &bodyP->rcm );

/* center of mass sum */

vec_incr_sca2d( _robotP->Rcm, bodyP->mass, _bodyP->rOcm );

/* rotary joint - cm partial velocity */

vec_partia12d( _bodyP->vcm[r], &bodyP->rcm );

vec_incr_sca2d( _robotP->L[r], bodyP->mass, &bodyP->vcm[r] );

/* rotary joint - cm derivative of partial velocity */

vec_deriv2d( &bodyP->vcmd[r], &bodyP->vcm[r], robotP->u[r] );

vec_incr_sca2d( &robotP->Ld[r], bodyP->mass, &bodyP->vcmd[r] );

/* linear momentum due to stuff along this chain */

if ( jointType is_not DISCONNECTED_JDINT ) then

{

/* cm partials */

vec_copy2d( _bodyP->vcm[s], _bodyP->v[s] );

vec_copy2d( &bodyP->vcmd[s], _bodyP->vd[s] );

/* partial velocity 's' affects all masses on this chain */

vec_incr_sca2d( _robotP->L[s], bodyP->mSum[s], &bodyP->v[s]

/* Ld terms here are non-zero */

);
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}

vec_incr_sca2d( _trobotP->Ld[s], bodyP->mSttm[s], ItbodyP->vd[s] ) ;

}

vec_scale2d( _rm, bodyP->mass, _bodyP->r0cm );

robotP->H[r] = bodyP->inertia + vec_cross2d( &rm, _bodyP->vcm[r] );

robotP->Hd[r] ffi 0.0;

while (

{
(sffiinBodyP->genSpd) is_not N0_GENSPD )

/* add angular momenta components */

robotP->H[s] ÷= vec_cross2d( _rm, &bodyP->vcm[s] );

robotP->Hd[s] += vec_cross2d( Rrm, RbodyP->vcmd[s] );

inBodyP = inBodyP->inboard;

/* do constraint points for objects */

if ( bodyP->object ) then

{

Kinematics( robotP, bodyP->constraintPoint, layer+l );

}

/* do until end of outboard chain(s) */

bodyListP ffi bodyP->outboard;

while ( bodyListP is_not NULL ) then

{

Kinematics( robotP, bodyListP->bodyP, layer+l );

bodyListP = bodyListP->listP;

}

C.4 Evaluation of Dynamical Equations of Motion

Language

Author

Date

: C with personal macro extensions

: Ross Koningstein

: 13 Apt 89
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Purpose : These routines evaluate the dynamical equations of motion.

*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include "c.ext"

#include "robot2d.h"

#include "vec_math2d.h"

#include "functions.h"

/* local function prototypes */

void Dynamics( ROBOT *robotP, BODY *Bodyp, integer layer );

void Diagonal( ROBOT *robotP, BODY *Bodyp, integer layer );

void EndpointConstraint(

CONSTRAINT *constraint,

double *rowX,

double *rowY,

double *u,

integer order,

integer order_c );

void Dynamicslnit( ROBOT *robotP, integer verbose )

{
BODY *inertialP = robotP->bodyP;

DLIST_ELEMENT *listP;

if ( verbose )

printf("RD> Simulation init of order _d system\n", robotP->order );

/* Calculate the diagonal of the Inertia (mass) matrix */

listP ffiinertialP->outboard;

while ( listP )

{

Diagonal( robotP, lis_P->bodyP, 0 );

listP = listP->listP;

}

void Diagonal( ROBOT *robotP, BODY *bodyP, integer layer )

{

register BODY *outBodyP;
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register integer r ffi bodyP->genSpd;

DLIST_ELEMENT *bodyListP;

if ( bodyP->bodyType is LINK ) then

if ( bodyP->jointType is DISCONNECTED_JOINT ) then

/* start of free-flying chain - elements are sum of masses */

robotP->MDiag[r-2] = bodyP->mSum[r-2];

robotP->MDiag[r-1] = bodyP->mSum[r-1];

/* contribution of I, mass*cm'2 of this body */

robozP->MDiag[r] = bodyP->inerziaO;

/* contributions of outward chains */

bodyLisZP ffibodyP->outboard;

while ( bodyListP is_not NULL ) then

{

outBodyP = bodyListP->bodyP;

robotP->MDiag[r] ÷= outBodyP->mSum[r]

* vec_dot2d( &outBodyP->start, RoutBodyP->start );

bodyListP = bodyListP->listP;

/* do until end of chain */

bodyLisZP = bodyP->outboard;

while ( bodyListP is_not NULL ) then

{

Diagonal( robotP, bodyListP->bodyP, layer+l );

bodyListP = bodyListP->listP;

}

void DynamicsEval( P_D_DATASET *dazaP )

ROBOT *robotP ffidataP->roboZP;

register integer r,s;

DLIST_ELEMENT *listP;

CONSTRAINT *constraints = robotP->constraints;

double *u ffirobotP->u;

integer order = robotP->order ÷ daZaP->c;

double *nonLinearLX ffi&robotP->M[O][order];
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double *nonLinearLY

integer row;

- &robotP->M[1] [order] ;

/* Zero out Mass (Inertia) Matrix and NL vector terms, set diagonal */

for ( r=order-1; r>=O; r-- )

{

robotP->Mro.s[r] = &robotP->M[r][O];

for ( sffiorder; s>=O; s-- )

{

robotP->M[r] [s] = 0.0;

Y
if ( r <ffirobotP->order ) then

{

robotP->M[r] [r] = roborP->MDiag[r] ;

}

}

if ( robotP->robotType is ROBOT_FREE ) then

{

/* free-flying robot - first two rows are linear momentum */

for ( rffiO;r<robotP->order; r++ )

{

/* enter partial linear momenta along x and y rows in 3acobian */

robotP->M[O] [r] = robotP->L[r] .x;

robotP- >M [r] [0] = robotP->M[O] [r] ;

robotP->M[1] [r] = robotP->L[r] .y;

robotP->M[r] [1] = robotP->M[1] [r] ;

/* (minus) sum derivatives for nonlinear linear momentum terms */

*nonLinearLX -= robotP->Ld[r] .x * u[r] ;

*nonLinearLY -= robotP->Ld[r] .y * u[r] ;

}

/* add base force terms */

*nonLinearLX -= robotP->Q[O] ;

*nonLinearLY -ffirobotP->Q[1] ;

/* Calculate terms in matrix */

listP = robotP->bodyP->outboard;

while ( listP )

{

Dynamics( robotP, listP->bodyP, 0 );

listP = listP->listP;

}
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row = robotP->order;

/* append any motion constraints */

while ( constraints )

(

/* foreach constraint, add constraint velocity terms */

EndpointConstraint(

constraints,

robotP->Mrows[row],

roborP->Mrowe[row+l],

robotP->u,

roboEP->order,

robotP->order+dataP->c );

constraints = constraints->nextP;

row += 2;

for ( r=robotP->order; r<order; r÷+ )

(

for ( s=O; s<order; s++ )

robotP->M[sJ It] = robotP->M[rJ [sJ ;

>

void EndpointConstraint(

CONSTRAINT *constraint,

double *rowX,

double *rowY,

double *u,

integer order,

integer order_c )

register

BODY

BODY

register VECTOR *partial =

register VECTOR *partialD =

double

double

double

double

VECTOR

double

integer i;

*endpointl = constraint->bodyl;

*endpoint2 = constraint->body2;

endpointl->v;

endpointl->vd;

*nonLinearX = rowX + order_c;

*nonLinearY = rowY + order_c;

*oldRowX = re.X;

*oldRowY = rowY;

force; /* relaxation force at constraint */

Kp = constraint->Kp; /* relaxation: spring */
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double Kv = constraint->Kv; /, relaxation: damping */

*nonLinearX = 0.0;

*nonLinearY = 0.0;

for ( i=order; i>O; i-- )

/* enter partial velocities along x and y rows in Jacobian */

*rowX ffipartial->x;

*rowY = partial->y;

partial++; rowX++; rowY++;

/* sum derivatives for nonlinear components */

*nonLinearX -= partialD->x * (*u) ;

*nonLinearY -= partialD->y * (*u) ;

partialD++ ;

u++;

}

vec_scale_add2d( _force, Kp, _endpointl->rO, Kv, _endpointl->vO );

partial = endpoint2->v;

partialD = endpoint2->vd;

rowX = oldRowX;

rowY = oldRowY;

for ( i=order; i>O; i-- )

{

I* enter partial velocities along x and y rows in Jacobian */

*rowX -ffipartial->x;

*rowY -= partial->y;

partial++; rowX+÷; rowY++;

/* sum derivatives for nonlinear components */

*nonLinearX += partialD->x * (*u);

*nonLinearY ÷= partialD->y * (*u);

partialD++;

u++;

}
vec_incr_sca2d( &force, -Kp, &sndpoint2->r0 );

vec_incr_sca2d( &force, -Kv, _endpoint2->v0 );

*nonLinearX -= force.x;

*nonLinsarY -= force.y;

}

void Dynamics( ROBOT ,robotP,register BODY *bodyP, integer layer )

{

register integer r = bodyP->genSpd;

register BODY *inBodyP = bodyP->inboard;
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register integer

register integer

DLIST_ELEMENT *bodyListP;

s = inBodyP->genSpd;

t;

if ( bodyP->bodyType is LINK ) then

{

/* generalized force computation */

*robotP->Nu[bodyP->genSpd] += robotP->Q[bodyP->genSpd];

if ( inBodyP->genSpd is_not N0_GENSPD )

{

*robotP->Nu[inBodyP->genSpd] -= robotP->Q [bodyP->genSpd] ;

}

/* evaluate terms involving vcm[r] - unique to this body */

while ((t=inBodyP->genSpd) is_not N0_GENSPD )

{

robotP->M[t] Jr] ÷= bodyP->mass

* vec_dot2d( &bodyP->vcm[t]. _bodyP->vcm[r] );

robotP->M [r] It] = robotP->M It3 [r] ;

/* nonlinear terms *I

*robotP->Nu[r] -= bodyP->mass

*vec_dot2d( &bodyP->von[r3 ,_bodyP->vcmd[t3 ) * robotP->u[t] ;

*robotP->Nu[t] -= bodyP->mass

*vec_dot2d( _bodyP->vcm[t3 ,_bodyP->vcmd[r] ) * robotP->u[r3 ;

I* evaluate terms involving v[s] - not unique to this body */

if ( t is_not s ) then

{

robotP->M[t] Is] ÷= bodyP->mSum[s3

* vec_dot2d( &bodyP->v[t3, &bodyP->v[s3 );

robotP->M[s3 It] = robotP->M[t] Is] ;

/* non-linear terms *I

*robotP->Nu[s] -ffibodyP->mSum[s3

*vec_dot2d( _bodyP->v[s3 ,_bodyP->vd[t] ) * robotP->u[t3 ;

*robotP->Nu[t] -= bodyP->mSum[s]

*vec_dot2d( _bodyP->v[t] ,_bodyP->vd[s3 ) * robotP->u[s3 ;

inBodyP = inBodyP->inboard;

}
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/* do until end of chain */

bodyListP = bodyP->ouZboard;

while ( bodyListP is_not NULL ) then

Dynamics( robotP, bodyListP->bodyP, layer+1 );

bodyListP = bodyListP->liszP;

>
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Appendix D

Multibody Simulation under

Matlab

This appendix contains computer code for the RD matlab script files that perform simu-

lations. The following Matlab scripts are included:

• The independent endpoint controller simulation

• The cooperating arm endpoint controller simulation

191
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D.1 Independent Endpoint Control Simulation

This simulation uses the configuration files described in section 6.1 in concert with RD simulation

code in Matlab. This Matlab file, sira_2arm_circle.m, reads in the description file, sets an

initial state, and uses a trajectory with a CT controller to determine motor torques. These

motor torques are fed in to a simulation.

_,simulation test case for rd

clear

clg

get function references for rd

rdh

Dynamics and control system RD models

DYN ffi1;

CON ffi2;

filename ffi'config.endpt';

read in configuration files for dynamics

[ns_d] = rd( RD_INIT, DYN, filename );

Ins_c] = rd( RD_INIT, CON, filename );

(1) and controller (2)

setup state

state = [ 0.6 0 3.14 -.78 1.57 .84 -1.58 0.0 0.0 0.0 0.0 0.0 0.0 0.01;

Pdes = [ 0 0 0 0 ]';

Vdes = [ 0 0 0 0 ]';

hdes = [ 0 0 0 0 ]';

Kp = 100;

Kv = 18;

X setup controls

controls = [0 0 0 0 0 0]';

setup actuators

actuators = [0 0 0 0 0 0]';

Timing information

dt = 1/60;

T = 3.0;

loops ffiT / dr;

t=O;
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Energy ffizeros(loops+l);

State ffi zeros(loops+l,ns_d);

time=[(0:loops)*dt];

nsteps ffi6;

plot work area

ploZ_tbl

axis([-O.5,1.0,-.6,.6]);

hold on

plot ([0 o], [-.7 I])

plot ([-.s .93,[0 03)

plot(I-.2 .2],[.2 .23)

plot(I-.2 .2],[-.2 -.2])

loop Zo evaluate controller:dynamics simulation

for ( i= 1:(loops+l) )

save state

State(i,:) = state;

plot vehicle state over simulation run

if ( rem( i-1, nsteps ) == 0 )

plotacv( state );

end

X trajectory generation

[Pdes,Vdes,Ades] = Zraj(t);

do kinematics

outputs = rd( RD_KINEMATICS. CON, state );

outputs = rd( RD_KINEMATICS, DYN, state );

evaluate desired controls

a_des = Kp*( Pdes - outputs(l:4) ) + Kv*( Vdes - outputs(S:8) ) + Ades;

controls ffi[ O; O; O; a_des 3';

do Jacobian equation

rd( RD_JACOBIAN, CO_, controls);

Z solve computed torque

[actuators,outputs] = rd( RD_COMPUTED_TOROUE, CON );

formulate dynamics equation
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rd( RD_DYNAMICS, CON, actuators );

rd( RD_DYNAMICS, DYN, actuators );

end

integrate state

[t,state] = ie( 'wrap', dr, t, state, actuators );

text(O.9,.55,'X','sc')

tezt(O.45,.85,'Y','sc')

hold off

'plot done'
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D.2 Cooperative-Arm Object Control Simulation

This simulation uses the configuration files described in section 6.2 in concert with RD simulation

code in Matlab. This Matlab file, sim_obj_circle.m, reads in the description file, sets an

initial state, and uses a trajectory with a CT controller to determine motor torques. These

motor torques are fed in to a simulation. Default values for relaxation constraints, lip = 625

and Kv = 50, are used.

7. simulation test case for rd

clg

7.get function references for rd

rdh

7,Dynamics and control system RD models

DYN = I;

CON ffi2;

dyn_file='config.obj';

con.file='config.obj';

ObjLen ffi 0.5;

ObjR = 0.1;

7.read in configuration files for dynamics (1) and controller (2)

[ns_d,ni_d,no_d,nc_d] = rd( RD_INIT, DYN, dyn_file );

[ns_c,ni_c,no_c,nc_c] = rd( RD_INIT, CON, con_file );

7. setup state

state = [ 0.5 0 3.14

state = [ 0.6 0 3.14

-1 2 1.11 -2 -.67 0.0 0.0 0.0

-1.002 1.706 1.002 -1.706 -.901

0.0 0.0 0.0 0.0 0.03;

O0 0 0 0 0 0 0 0];

Pdes ffi[ 0 0 1.57 ]';

Ydes = [ 0 0 0 ]';

hdes = [ 0 0 0 ]';

Kp = 49;

Kp = 100;

Kv = 14;

Kv = 22;

7. setup controls

controls = [ 0 0 0 0 0 0 0 0 ]';

7. setup actuators
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actuators ffi[ 0 0 0 0 0 0 0 0 ]';

Tffi3;

Z Timing information

dt = 1/60;

loops = T / dr;

t = 0;

ZEnergy = zeros(loops+l);

State = zeros(loops+1,ns_d);

Outputs = zeros(loops+1,no_d);

time=[(O:loops)*dt];

nsteps = 6;

Z plot work area

Z plot_tbl

axis([-0.5,1.0,-.6,.6]);

hold on

plot ([0 0], [-.7 I])

plot ([-.8 .93, [0 o])

plot(E-.2 .2],[.2 .2])

plot(I-.2 .2],[-.2 -.2])

7. Circular trajectory

pO = [ o o ],;

r = 0.03;

w = 50 / 60 * 2 * 3.14;

loop to evaluate controller:dynamics simulation

for ( if l:(loops+1) )

7. save state

State(i,:) = state;

Z trajectory generation

[PCdes,VCdes,ACdes] ffitraj2(pO,r,w,t) ;

Pdes ffi[PCdes; pil2] ;

Vdes = [VCdes; 0];

Ades ffi[ACdes; 0];

7. do kinematics

outputs - rd( RD.KINEMATICS, CON, stare );

outputs = rd( RD_KINEMATICS, DYN, state );

Outputs(i,:) = outputs';
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7.plot vehicle state over simulation run

if ( rein( i-l, nsteps ) == 0 )

if ( i > 30 )

plotacv( state );

plotobj(outputs(l:2), outputs(3), ObjLen, ObjR );

end

end

evaluate desired controls

a_des ffiKp*(Pdes(l:3)-outputs(l:3)) + Kv*(Vdes(l:3)-outputs(4:6)) + Ades;

controls = [ O; O; O; a_des; 0 ]';

do Jacobian equation

rd( RD_JACOBIAN, CON, controls);

solve computed torque

[actuators,dynoutputs] ffird( RD_C0MPUTED_TOKQUE, CON );

do not allow thruster activity

actuators = [ 0; 0; 0; actuators(4:8) ];

formulate dynamics equation

rd( RD_DYNAMICS, DYN, actuators );

X integrate state

It,state] = ie( 'wrap', dr, t, state, actuators );

end

text(O.9,.55,'X','sc')

text(O.45,.85,'Y','sc')

hold off

'plot done'
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