4 research outputs found

    A Near-Optimal Linear Crosstalk Precoder for VDSL

    Get PDF
    Crosstalk is the major source of performance degradation in VDSL. In downstream transmission crosstalk precoding can be applied. The transmitted signal is predistorted, such that the predistortion annihilates with the crosstalk introduced in the binder. Several crosstalk precoders have been proposed. Unfortunately they either give poor performance or require non-linear operations, which results in a high complexity. In this paper we present a simple, linear diagonalizing crosstalk precoder with low run-time complexity. A lower bound on the performance of the DP is derived. This allows performance to be predicted without explicit knowledge of the crosstalk channels, which simplies service provisioning considerably. This bound shows that the DP operates close to the single-user bound. So the DP is a low complexity design with predictable, near-optimal performance. The combination of spectra optimization and crosstalk precoding is also considered. Spectra optimization in a broadcast channel generally involves a highly complex optimization problem. Since the DP decouples transmission on each line, the spectrum on each modem can be optimized through a dual decomposition, leading to a significant reduction in complexity

    Multi-User Signal and Spectra Coordination for Digital Subscriber Lines

    Get PDF
    The appetite amongst consumers for ever higher data-rates seems insatiable. This booming market presents a huge opportunity for telephone and cable operators. It also presents a challenge: the delivery of broadband services to millions of customers across sparsely populated areas. Fully fibre-based networks, whilst technically the most advanced solution, are prohibitively expensive to deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as a stepping-stone to a fully fibre-based network, DSL operates over telephone lines that are already in place, minimizing the cost of deployment. The basic principle behind DSL technology is to increase data-rate by widening the transmission bandwidth. Unfortunately, operating at high frequencies, in a medium originally designed for voice-band transmission, leads to crosstalk between the different DSLs. Crosstalk is typically 10-15 dB larger than the background noise and is the dominant source of performance degradation in DSL. This thesis develops practical multi-user techniques for mitigating crosstalk in DSL. The techniques proposed have low complexity, low latency, and are compatible with existing customer premises equipment (CPE). In addition to being practical, the techniques also yield near-optimal performance, operating close to the theoretical multi-user channel capacity. Multi-user techniques are based on the coordination of the different users in a network, and this can be done on either a spectral or signal level
    corecore