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Abstract

The appetite amongst consumers for ever higher data-rates seems insatiable.
This booming market presents a huge opportunity for telephone and cable op-
erators. It also presents a challenge: the delivery of broadband services to mil-
lions of customers across sparsely populated areas. Fully fibre-based networks,
whilst technically the most advanced solution, are prohibitively expensive to
deploy. Digital subscriber lines (DSL) provide an alternative solution. Seen as
a stepping-stone to a fully fibre-based network, DSL operates over telephone
lines that are already in place, minimizing the cost of deployment.

The basic principle behind DSL technology is to increase data-rate by widening
the transmission bandwidth. Unfortunately, operating at high frequencies, in
a medium originally designed for voice-band transmission, leads to crosstalk
between the different DSLs. Crosstalk is typically 10-15 dB larger than the
background noise and is the dominant source of performance degradation in
DSL.

This thesis develops practical multi-user techniques for mitigating crosstalk
in DSL. The techniques proposed have low complexity, low latency, and are
compatible with existing customer premises equipment (CPE). In addition to
being practical, the techniques also yield near-optimal performance, operating
close to the theoretical multi-user channel capacity.

Multi-user techniques are based on the coordination of the different users in a
network, and this can be done on either a spectral or signal level.

Spectra coordination, also known as dynamic spectrum management (DSM),
minimizes crosstalk by intelligently setting the transmit spectra of the modems
within the network. Each modem must achieve a trade-off between maximizing
its own data-rate and minimizing the crosstalk it causes to other modems within
the network. The goal is to achieve a fair trade-off between the rates of the
different users in the network.

The first part of this thesis investigates the optimal design of transmit spectra
for a network of crosstalking DSLs. This problem was previously considered
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iv Abstract

intractable since it requires the solution of a high-dimensional, non-convex op-
timization. This thesis uses a dual-decomposition to solve the optimization in
an efficient, tractable way. The resulting algorithm, optimal spectrum balanc-
ing, achieves significant gains over existing spectra coordination algorithms,
typically doubling or tripling the achievable data-rate.

The second part of this thesis investigates multi-user signal coordination. In
the upstream, reception is done in a joint fashion; the signals received on each
line are combined to cancel crosstalk whilst preserving the signal of interest.

Existing crosstalk cancelers are based on decision feedback, which leads to
problems with error propagation, high complexity, and a long latency. To
address this problem, this thesis presents a simple linear canceler based on the
well known zero-forcing criterion. This technique has a low complexity, short
latency, and operates close to the theoretical channel capacity.

In the downstream, transmission is done in a joint fashion; predistortion is
introduced into the signal of each user prior to transmission. This predistortion
is chosen such that it annihilates with the crosstalk introduced in the channel.
As a result the customer premises (CP) modems receive a signal that is crosstalk
free.

Existing precoder designs either give poor performance or require the replace-
ment of CP modems, which raises a huge legacy issue. To address this problem,
this thesis presents a simple linear precoder based on a channel diagonalizing
criterion. This technique has a low complexity, does not require the replace-
ment of CP modems, and operates close the the theoretical channel capacity.

Despite the low complexity of the techniques described, signal coordination is
still too complex for current implementation. This problem is addressed in
this thesis through a technique known as partial cancellation. It is well known
that the majority of crosstalk experienced on a line comes from the 3 to 4
surrounding pairs in the binder. Furthermore, since crosstalk coupling varies
dramatically with frequency, the worst effects of crosstalk are limited to a small
selection of tones. Partial cancelers exploit these facts to achieve the majority
of the performance of full cancellation at a fraction of the complexity.

Partial canceler and precoder design is discussed and shown to be equivalent
to a resource allocation problem. Given a limited amount of available run-time
complexity, a modem must distribute this across lines and tones such that the
data-rate is maximized. This thesis presents the optimal algorithm for partial
canceler design and several simpler, sub-optimal algorithms. These algorithms
are shown to achieve 90% of the data-rate of full cancellation at less than 30%
of the complexity.



Notation

Mathematical Notation

x scalar x
x vector x

X matrix X

[X]row n row n of matrix X

[X]col m column m of matrix X

X \ Y elements contained in set X and not in the set Y

|X| cardinality of set X

|x| absolute value of scalar x

[x]
+

max(0, x)

[x]
b
a max (a, min(x, b))

b·c round down to nearest integer
‖·‖ L2-norm

(·)T
matrix transpose

(·)H
matrix Hermitian transpose

qr
= QR decomposition
svd
= SVD decomposition
conj (·) complex conjugate
dec (·) decision operation
det (·) matrix determinant
diag {x} diagonal matrix with vector x as diagonal
E {·} statistical expectation
I(x; y) mutual information between x and y
max(x, y) maximum of x and y
min(x, y) minimum of x and y
O (·) order
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vi Notation

Fixed Symbols

A(N) set of strictly diagonally dominant matrices of size N × N
bn
k bitloading of user n on tone k

bn
k,bc BC single-user bound

bn
k,mac MAC single-user bound

FK DFT matrix of size K
fs DMT symbol rate
Hk crosstalk channel matrix on tone k
hn

k column n of Hk

h
n

k row n of Hk

hn,m
k channel from TX m to RX n on tone k

IK IDFT matrix of size K
IN identity matrix of size N
K number of DMT-tones
L Lagrangian dual function
Lk Lagrangian dual function on tone k
Mn

k crosstalkers cancelled when detecting user n on tone k
M

n
k crosstalkers not cancelled when detecting user n on tone k

N number of lines within the binder
Pk crosstalk precoding matrix on tone k
Pn transmit power available to modem n
Rn data-rate on line n
Rtarget

n target data-rate for line n
smask

k PSD mask on tone k
s̃n

k PSD of symbol intended for receiver n on tone k, x̃n
k

sn
k PSD of TX n on tone k

sn length K vector containing PSD of TX n on all tones
sk length N vector containing PSDs of all TXs on tone k
Uk left singular-vectors of Hk

Vk right singular-vectors of Hk

wn weight for user n in weighted rate-sum
xn

k signal sent by TX n on tone k
x̂n

k estimate of user n’s symbol on tone k
x̃n

k symbol intended for user n on tone k prior to precoding
xk transmitted vector on tone k
yn

k received signal of line n on tone k
yk received vector on tone k
zn

k noise of line n on tone k
zk noise vector on tone k
αk degree of diagonal dominance on tone k
βk precoder scaling factor on tone k
∆f inter-tone spacing
Γ SNR-gap to capacity
Λk singular values of Hk
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λn Lagrange multiplier of line n
µn proportion of run-time complexity allocated to user n
σn

k noise power of RX n on tone k
σ̃n

k noise power of RX n on tone k after cancellation filter
0x×y zeros matrix of size x × y

Acronyms and Abbreviations

ADC Analog to Digital Converter
ADSL Asymmetric Digital Subscriber Line
AFE Analog Front-end
AWG American Wire Gauge
AWGN Additive White Gaussian Noise
BC Broadcast Channel
CDMA Code Division Multiple Access
CO Central Office
CLEC Competitive Local Exchange Carrier
CP Customer Premises
CPE Customer Premises Equipment
CWDD Column-wise Diagonal Dominance
DFC Decision Feedback Canceler
DFE Decision Feedback Equalizer
DFT Discrete Fourier Transform
DMT Discrete Multi-tone
DP Diagonalizing Precoder
DS Downstream
DSLAM Digital Subscriber Line Access Multiplexer
DSM Dynamic Spectrum Management
EFM Ethernet in the First Mile
FDMA Frequency Division Multiple Access
FEQ Frequency-domain Equalizer
FFT Fast Fourier Transform
IC Interference Channel
IDFT Inverse Discrete Fourier Transform
ILEC Incumbent Local Exchange Carrier
ISI Inter-symbol Interference
IW Iterative Waterfilling
KKT Karush Kuhn Tucker
LAN Local Area Network
MAC Multi-access Channel
MIMO Multi-input Multi-output
ONU Optical Network Unit
PBO Power Back-off
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PSD Power Spectral Density
RFI Radio Frequency Interference
RLCG Resistance Inductance Capacitance Conductance
RT Remote Terminal
RWDD Row-wise Diagonal Dominance
RX Receiver
SIC Successive Interference Cancellation
SINR Signal to Interference plus Noise Ratio
SMC Spectrum Management Centre
SNR Signal to Noise Ratio
SVD Singular Value Decomposition
THP Tomlinson-Harashima Precoder
TX Transmitter
UMTS Universal Mobile Telecommunications System
US Upstream
USD United States Dollar
VDSL Very high-speed Digital Subscriber Line
ZF Zero Forcing
ZFP Zero Forcing Precoder
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Chapter 1

Introduction

1.1 Digital Subscriber Lines

Digital communication has undergone a revolution in the last decade. Typ-
ical connections speeds have increased from 14.4 kbps in 1994, to 1.5 Mbps
today, a hundred-fold improvement. This revolution is being driven by the ex-
plosion of the Internet and new high-speed applications like video-streaming,
file-sharing of music and movies, teleworking and video-conferencing. The ap-
petite amongst consumers for ever higher data-rates seems insatiable, and will
continue to grow as new technologies like high definition television (HDTV)
take hold.

Sales of broadband access today exceed $22 billion worldwide[72]. This will
grow substantially as countries like China and India industrialize. This boom-
ing market presents a huge opportunity to telephone and cable operators. It
also presents a challenge: the delivery of broadband services to millions of
customers, across sparsely populated areas.

Whilst technically the most advanced solution, fully fibre-based networks are
prohibitively expensive to deploy. Optical terminal equipment, and the trench-
ing of fragile fibres is extremely costly. The expected recovery period for the
initial investment on a fully fibre network is 7.5 years, time that companies do
not have in today’s volatile market[78, 55].

Digital subscriber lines (DSL) provide an alternative solution. Seen as a step-
ping-stone to a fully fibre-based network, DSL provides connectivity in the last
mile between the customer premises (CP) and the fibre-network core. DSL
operates over telephone lines that are already in place, minimizing the cost of
deployment.

1
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Figure 1.1: DSL Network Evolution

With DSL the fibre network grows through evolution rather than revolution.
Instead of replacing the entire network with fibre in one operation, an extremely
expensive option, with DSL the fibre network grows according to customer
demand. In the beginning, fibre is used to connect the central offices (CO)
to the network core. ADSL provides connectivity from the CO to the CP,
providing downstream (DS) rates of up to 6 Mbps.

As demand increases, fibre can be laid to the end of each street where an optical
network unit (ONU), also known as a remote terminal (RT), is installed, as
shown in Fig. 1.1. VDSL provides connectivity from the ONU to the CP,
increasing rates to 52 Mbps. In high density housing and office buildings,
fibre can be extended to the basement. Ethernet in the First Mile (EFM), a
technology based on DSL, then connects each office to an ONU in the basement,
providing symmetrical rates of up to 1 Gbps[2].

Following this evolutionary approach, operators can deploy their fibre networks
as demand grows. Expenditure on extra infrastructure is fueled using revenue
from existing services. This leads to a fast return on investment and a lower
risk for operators. With DSL, fibre can be deployed in a heterogeneous fashion,
and scaled to match demand. Fibre can be deployed to all basements in the
central business district, to the end of the street in urban areas, and to the CO
in suburban and rural areas.

One of the main drives behind the development of DSL technology, was a
desire by telephone network operators (telcos) to enter the broadband consumer
market. Until recently, broadband access in many countries was dominated by
cable network operators (cablecos) who provide Internet access over the same
coaxial cable they use to provide television service.

ADSL was originally developed in 1987 with the goal of providing television
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services over the phone network. These plans failed, but ADSL did not. The
Internet boom, that began with the first commercial Internet service provider
in 1989, created a massive demand for broadband access. ADSL technology
was developed, and initial field trials began in 1995.

Today the original dream of television service over DSL is being revisited, with
operators deploying triple-play services, a combination of video, high-speed
Internet and voice. This is driving demand for still higher data-rates, and new
DSL technologies such as ADSL2+ and very high bit-rate digital subscriber line
(VDSL) are being developed in response.

VDSL is now being deployed in Korea and Japan where high density housing
makes fibre-to-the-basement economically feasible. Access rates up to 70 Mbps
are currently provided and demand continues to grow.

Cable modems present the biggest threat to DSL as a competing technology
for broadband access. At the same time wireless and satellite systems are be-
ing developed that threaten to take a share of the broadband market. Satellite
technology has a natural advantage in rural areas where the population density
is too low to justify installing an RT. For a low number of subscribers wire-
less and satellite solutions are much cheaper since they do not require heavy
investment in infrastructure.

In developing countries such as India and China there is often no telephone
infrastructure in place. Most citizens do not own a fixed line telephone and
rely on mobile phones instead. Here DSL loses its main benefit, which is the
use of existing telephone infrastructure. So wireless and satellite systems will
find a large potential market in these places.

Despite these specific cases, for conventional broadband access DSL and coaxial
cable will continue to dominate the market. The primary reason behind this
is that wireless is an inherently more expensive delivery means, in terms of
bits/second /Hz/user, than wireline. This higher cost results from a number of
fundamental differences between wireline and wireless transmission, which we
now describe.

To begin with, wireline media have a lower attenuation per unit distance than
wireless media. This is natural since propagation of an electromagnetic sig-
nal through free space leads to more loss than along a waveguide, such as a
telephone line or coaxial cable. Furthermore, wireline systems have channels
that vary very slowly with time. This allows techniques such as bitloading
and powerloading to be applied to increase spectral efficiency. Additionally the
overhead required for synchronization and channel identification will be much
lower in the slowly varying wireline channel, than in a wireless environment
where the channel typically changes for every packet that is received.

Interference in a DSL network is suppressed to a large extend by the insulation
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between the twisted pairs. This allows different lines to transmit data in the
same frequency range at the same time. Since each customer has their own
phone line, the total capacity of the network grows with the number of users.
Hence a DSL system can potentially serve an unlimited number of users. In
wireless systems users must share a common, limited bandwidth. There is no
natural suppression of interference in the transmission medium. As a result,
each user must employ time-division, frequency-division, code-division or some
other orthogonal multi-access technique to prevent interference. The total ca-
pacity of the network is limited by the available bandwidth and as the number
of subscribers increases the average data-rate of each subscriber decreases. To
maintain the same data-rate as the number of subscribers grows, the operator
must decrease cell size and increase the number of base-stations, an extremely
expensive operation.

It should be kept in mind that base-stations themselves must be connected to
the network backbone using some kind of wireline technology such as DSL,
coaxial cable or fibre. So the use of a wireless access point simply shifts the
wireline system design problem further back into the network. The problem
however must still be solved.

In general wireline access technology will always be cheaper in terms of bits/
second/Hz/user because it is technically an easier problem to solve. This is
reflected in the cost of customer premises equipment (CPE), which in 2003
cost $400 USD for a wireless MAN terminal, and $50 USD for DSL[42, 84].

Despite the higher cost per user of wireless systems in high-density urban and
sub-urban areas, they will continue to find application in niche markets such
as rural areas. Here fixed wireless or satellite access may be a more economic
solution. It should also be noted that with satellite access upstream connectiv-
ity must still be provided over a wireline network, e.g. DSL. Furthermore, with
satellite systems low latency is difficult to achieve, which creates problems for
voice-over-IP and video-conferencing applications.

Perhaps the biggest advantage of wireless access is the low initial investment
required to roll out a network and begin serving customers. For example, with
$4.2 million USD it is possible to deploy a network over 500 square km serving
up to 6000 subscribers[42]. This is orders of magnitude lower than the cost of
rolling out a DSL or coaxial network to serve the same area. An additional
problem for new operators entering the market, the so-called competitive lo-
cal exchange carriers (CLEC), is that the incumbent local exchange carriers
(ILEC) currently have a monopoly on the twisted-pair network. This is un-
likely to change in the near-future as recent economic problems with the dot-
com bubble and the resulting effect on the telecoms industry has delayed plans
in many countries for liberalization of local loop access (unbundling). This
makes it difficult for CLECs to enter the DSL market and will lead to many
of these companies moving to wireless access technologies instead. The lower
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cost of entry into the wireless market and relative ease of deployment may lead
to a more dynamic competitive environment and help break the telco/cableco
duopoly that is developing in many countries.

So far we have considered wireless access a a competing technology to DSL.
Wireless and wireline technologies are inherently different, and offer different
trade-offs of mobility, convenience, ubiquity, data-rate and cost. The broad-
band networks of the future will not consist of either wireless or wireline tech-
nology alone, but a dynamic mixture of both. At home many users may prefer
a high-speed, low-cost DSL line to provide connectivity, coupled with a wireless
local area network (LAN) hub for convenient access. Away from home users
may happily sacrifice some data-rate to have convenient, mobile access which
may be delivered through UMTS, IEEE 802.11 LANs, IEEE 802.16 metropoli-
tan area networks or some combination of all three[56, 77, 76]. An adaptive,
intelligent network that can seamlessly switch users from one access technol-
ogy to another is the goal of future access networks. Both wireline and wireless
technology have an important and synergistic part to play in this future.

There are three challenges that limit the future growth of DSL services:

Rate

The demand for ever-higher connection rates continues to grow. This is driven
by the desire for triple-play services, e.g. delivering two HDTV channels, at
12 Mbps per channel, plus high-speed Internet at 10 Mbps, plus a voice/music
channel of 1 Mbps requires a 35 Mbps service. ADSL systems today offer 3
Mbps in high density urban areas. In suburban and rural areas the access rates
are often 256 kbps or less.

Increasing access rate is a major challenge for telcos. This is particularly crucial
due to the competition from cablecos, who continue to upgrade their networks
to provide higher access rates. The coaxial cable is a superior medium to
twisted pair, and cable networks today are only limited by the switching speed
of CPE. Note that, since the cable network is a shared medium, all CP modems
must switch at the full rate of the cable, which corresponds to the number of ac-
tive users times the access rate of each user. As a result, CP modems for cable
networks are more expensive to manufacture than for DSL. This slight advan-
tage will soon change as Moore’s law decreases the cost of computing power.
Hence it is imperative that telcos increase access rates to remain competitive.

Reach

Customers in suburban and rural areas are typically situated far from the CO.
Over such distances channel attenuation is high due to the poor quality of the
twisted-pair medium. This limits the number of customers that can be reached
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with DSL services.

This problem is particularly evident in geographically sparse countries like the
USA and Australia where DSL penetration is less than 5%[50]. Compare this
with countries like Korea, which has a penetration of 29%, and it is clear that
telcos are missing out on a large opportunity for revenue.

Symmetry

Existing DSL technologies such as ADSL are asymmetric, providing a higher
rate in the DS than in the upstream (US). Whilst this makes sense in con-
ventional applications such as web-browsing and video-streaming, the growth
of peer-to-peer file-sharing of music and movies, video conferencing and tele-
working via virtual private LANs is increasing the demand for US data-rate.
Providing high US and DS rates in the limited bandwidth available is a major
challenge for DSL vendors and operators alike.

All three of these issues, rate, reach and symmetry, can be addressed by extend-
ing the fibre network closer to the customer. The DSL network then operates
over shorter lines, leading to a lower channel attenuation and higher data-rates.
However the deployment of remote, fibre-fed terminals at the end of each street
is expensive. Computing power, on the other hand, is cheap and continues to
go down in price. This motivates the use of signal processing techniques, rather
than fibre deployment, to increase performance. The development of advanced
coding, equalization and multi-user transmission techniques is essential for DSL
to stay competitive with coaxial networks. This thesis focuses on the use of
multi-user techniques to improve DSL performance.

1.2 The Crosstalk Problem

The twisted-pair medium was originally designed with voice-band communica-
tion in mind. Traditional voice band modems limit transmission to below 4
kHz and, as a result, are limited to a data-rate of 56 kbps.

The basic principle behind DSL technology is to increase the achievable data-
rate by widening the transmission bandwidth. ADSL uses frequencies up to
1.1 MHz, which allows it to provide data-rates up to 6 Mbps. VDSL uses
frequencies up to 12 MHz, which increases the maximum data-rate to 52 Mbps.

Unfortunately, operating at such high frequencies in a medium originally design
for voice-band transmission leads to its own problems. The twisted pairs in the
access network are bundled together within large binder groups, which typically
contain 20 to 100 individual pairs. The high frequencies used in DSL give rise
to electromagnetic coupling between the different twisted-pairs. This leads to
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Figure 1.2: Crosstalk

interference or crosstalk between the different systems operating within the
binder, as shown in Fig. 1.2. Crosstalk is typically 10-15 dB larger than the
background noise and is the dominant source of performance degradation in
DSL.

Crosstalk transforms the twisted-pair binder into a multi-user channel. Signif-
icant work has been done on multi-user communication techniques, typically
motivated by wireless applications. These techniques can also be applied in
DSL to mitigate crosstalk and this is the focus of this thesis.

Whilst the DSL environment shares some superficial similarities to the wireless
environment, in many ways it is fundamentally different. For example the
DSL channel is quite static, changing once every few hours, unlike the wireless
channel, which varies continually. Power constraints are not an issue in DSL
since modems use a mains power supply. The DSL channel has a much smaller
attenuation than a typical wireless channel, and this makes design easier.

On the other hand, DSL modems typically operate at a much higher rate
than wireless systems. An ADSL modem runs at 4000 symbols per second,
and transmits over 256 tones, so a simple multiplication operation requires 1
million floating-point operations per second. This puts strict limitations on the
complexity of any signal processing. As will be shown, considerable effort must
be put into reducing the complexity of multi-user techniques in DSL.

1.3 State of the Art

Current modems operate operate in a single-user fashion. Crosstalk is treated
as background noise; it decreases the receiver-side SNR and leads to a signif-
icant degradation in data-rate. Fig. 1.3 shows the data-rates achieved by a
group of 25 VDSL modems. The modems are deployed in a common binder
and suffer mutual crosstalk. Clearly there is a significant performance penalty
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Figure 1.3: Data-rate loss due to Crosstalk in VDSL

as a result of crosstalk.

Using multi-user techniques such as multi-user spectra optimization can help
minimize the effects of crosstalk. Existing modems are not capable of adjusting
their transmit spectra, and instead employ fixed transmit masks. Whilst there
is some provision in the new DSL standards for a programmable transmit mask,
at present no DSL product makes use of this capability[4]. Fig. 1.4 shows
the data-rates achieved by a group of 25 ADSL modems. The modems are
deployed in a common binder and suffer mutual crosstalk. The achievable
data-rates are shown with fixed transmit masks, and with optimized transmit
spectra, according to the optimal spectrum balancing algorithm from Chapter
3. Clearly, existing modems suffer a significant performance penalty for using
fixed transmit spectra.

Another multi-user technique, known as crosstalk cancellation, can completely
remove crosstalk allowing operation on the crosstalk free line from Fig. 1.3.
Unfortunately this technique is not available in existing modems due to its high
complexity, long latency, and inability to work with existing customer premises
equipment.

Many techniques have been proposed in literature for both crosstalk cancella-
tion and multi-user spectra coordination. A detailed study of these techniques
is deferred to the relevant chapters. The main problems with these techniques
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Figure 1.4: Data-rate loss due to Unoptimized Transmit Spectra in ADSL

are complexity, latency, and incompatibility with existing equipment.

The goal of this thesis is to develop practical multi-user techniques for DSL that
can be applied in existing or near-future DSL platforms. In response, this thesis
develops algorithms that have low complexity, low latency, and are compatible
with existing customer premises equipment (CPE). In addition to being practi-
cal, the algorithms are also shown to yield near-optimal performance, operating
close to the theoretical multi-user channel capacity.

1.4 Thesis Overview and Contributions

An overview of the thesis and its major contributions is now given. Multi-user
techniques are based on the coordination of different users in a network. This
can be done on a spectral or signal level.

Part I of this thesis investigates multi-user spectra coordination. With spectral
coordination the transmit spectra of the modems within a network are limited
in some way to minimize the negative effects of crosstalk. Each modem must
achieve a trade-off between maximizing its own data-rate and minimizing the
crosstalk it causes to other modems within the network. The goal is to achieve
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a fair trade-off between the rates of the different users in the network.

Chapter 3 investigates the design of optimal transmit spectra for a network of
crosstalking DSLs. This problem was previously considered intractable since
it requires the solution of a high-dimensional, non-convex optimization. Chap-
ter 3 shows how the application of a dual-decomposition solves the optimiza-
tion in an efficient, tractable way. The resulting algorithm, which we name
optimal spectrum balancing, achieves significant gains over existing spectra co-
ordination algorithms, typically doubling or tripling the achievable data-rate.
The material in Chapter 3 has been published as [40, 39, 110, 14, 94, 97],
submitted for publication as [20, 95], and has been patented by Alcatel[32].
The optimal spectrum balancing algorithm was submitted to standardization
as [36, 37, 38, 35] and is now part of the draft ANSI standard on Dynamic
Spectrum Management[8].

Part II of this thesis investigates multi-user signal coordination. In a DSL
network, the line-side transceivers are often co-located at the CO. This allows
modems to be co-ordinated on a signal level.

In the US, signal coordination is used between co-located CO receivers. Recep-
tion is done in a joint fashion; the signals received on each line are combined
to cancel crosstalk whilst preserving the signal of interest.

Chapter 4 discusses crosstalk canceler design. Existing techniques are based
on decision feedback between the different users within the binder. To prevent
error propagation decoding must be done before decisions are fed back, which
leads to a high computational complexity and latency. To address this problem,
a simple linear canceler is presented based on the well known ZF criterion.
This technique has a low complexity and latency. It is shown that, due to
a special property of upstream DSL channels, this design operates close to
the theoretical channel capacity. A low complexity algorithm is proposed for
spectra optimization when crosstalk cancellation is employed. This material
has been published as [34, 22, 28, 23] and submitted for publication as [18].

In the downstream, signal coordination is used between co-located CO trans-
mitters. Transmission is done in a joint fashion; predistortion is introduced
into the signal of each user prior to transmission. This predistortion is chosen
such that it annihilates with the crosstalk introduced in the channel. As a
result the customer premises (CP) modems receive a crosstalk free signal.

This technique, known as crosstalk precoding, is discussed in Chapter 5. Exist-
ing precoder designs lead either to poor performance or require the replacement
of CP modems. Millions of CP modems are currently in use, owned and op-
erated by a multitude of customers. Replacing these modems presents a huge
legacy issue. To address this problem a simple linear precoder is presented
based on a channel diagonalizing criterion. The precoder has a low complexity
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and works with existing CP modems. It is shown that, due to a special prop-
erty of downstream DSL channels, this design operates close to the theoretical
channel capacity. A low complexity algorithm is proposed for spectra optimiza-
tion when crosstalk precoding is employed. This material has been published
as [17, 29], submitted for publication as [19] and submitted to standardization
as [33].

As a by-product, the work in Chapters 4 and 5 produced as set of bounds
on the determinants and inverses of diagonally dominant matrices. These are
listed in Appendix B.

Despite the low complexity of the techniques presented in Chapters 4 and 5,
signal coordination still requires a much higher complexity than is available in
existing DSL modems. Crosstalk cancellation and precoding have a complexity
that scales quadratically with the number of lines within a binder. For typical
binders, which contain anywhere from 20 to 100 lines, these techniques are
outside the scope of present day implementation and may remain so for several
years. Chapter 6 addresses this problem through a technique known as partial
cancellation.

It is well known that the majority of crosstalk experienced on a line comes
from the 3 to 4 surrounding pairs in the binder. Furthermore, since crosstalk
coupling varies dramatically with frequency, the worst effects of crosstalk are
limited to a small selection of tones. Partial cancelers exploit these facts to
achieve the majority of the performance of full cancellation at a fraction of
the complexity. Whilst the idea of partial cancellation has been discussed in
literature, no work has specifically focused on partial canceler design.

Chapter 6 investigates partial canceler and precoder design, which is in essence
a problem of resource allocation. Given a limited amount of available run-time
complexity, a modem must distribute this across lines and tones such that the
data-rate is maximized. Chapter 6 presents the optimal algorithm for partial
canceler design and several simpler, sub-optimal algorithms. These algorithms
are shown to achieve 90% of the data-rate of full cancellation at less than 30%
of the complexity. This material has been published as [27, 25, 24, 26] and has
been patented by Alcatel[30, 31].

Conclusions are drawn and interesting areas for further research are discussed
in Chapter 7.
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Chapter 2

Basic Concepts

2.1 Digital Subscriber Lines

2.1.1 Discrete Multi-tone Modulation

Modern DSL systems can be divided into two camps: single-carrier and dis-
crete multi-tone (DMT) modulated systems. Before the development of DSL,
all voiceband modems were based on single-carrier modulation. In voiceband
transmission the lower complexity of single-carrier systems made them a more
attractive option.

In broadband systems such as DSL, the transmission channel is frequency selec-
tive. This results in inter-symbol interference (ISI) which degrades performance
significantly if left unaddressed. In single-carrier systems ISI can be removed
through the use of a decision feedback equalizer (DFE) at the receiver. Whilst
this improves performance it has a high run-time complexity and can suffer
from error propagation.

An alternative is to use a Tomlinson-Harashima precoder at the transmitter to
precompensate for ISI. This avoids problems with error propagation, however
it requires accurate channel knowledge at the transmitter. Hence the receiver
must measure the channel and communicate this to the transmitter, which re-
sults in a high transmission overhead and increased computational complexity.

DMT modulation was proposed to address the short-comings of single carrier
systems. With DMT modulation the frequency selective channel is effectively
divided into many parallel sub-channels, known as tones, as shown in Fig. 2.1.
Within each sub-channel the channel response is approximately flat, so trans-
mission over the sub-channels does not suffer from ISI. As a result a scalar

13
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Figure 2.1: Discrete Multi-tone Transmission (Sub-channels)

multiplication is sufficient to equalize each sub-channel. Combined with effi-
cient modulation through the fast Fourier transform (FFT), this leads to a
much lower complexity than single-carrier systems with a DFE[13]. Further-
more, this approach does not suffer from error propagation.

Time-Domain Transmission

DMT modulation is now described in more detail. Consider transmission
through a channel with ISI. Denote the transmit sequence xtime

i , which has
a sampling rate Fs = 1/Ts. If the transmitter and receiver are synchronized,
then the discrete-time signal after sampling at rate Fs at the receiver is

ytime
i =

L∑

l=0

htime
l xtime

i−l + ztime
i , (2.1)

where htime
l , h(lTs), and h(t) denotes the continuous-time impulse response of

the channel. L is chosen such that htime
l = 0 for all l > L. The term zi , z(iTs),

where z(t) is continuous-time additive Gaussian noise at the receiver. This term
will be used to capture thermal noise, radio frequency interference (RFI) and
alien crosstalk.

Consider a block of symbols xtime , [xtime
K , . . . , xtime

1−L]T to be transmitted

through the channel. Denote the corresponding received sequence as ytime ,

[ytime
K , . . . , ytime

1 ]T . From (2.1) transmission can be modelled in matrix form as

ytime = Htoeplitzx
time + ztime, (2.2)
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where ztime , [ztime
K , . . . , ztime

1 ]T and the K × K + L Toeplitz channel matrix

Htoeplitz ,




htime
0 · · · htime

L 0 · · · 0

0 htime
0 · · · htime

L

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 htime
0 · · · htime

L




.

The Cyclic Prefix

In order to ensure that the DMT sub-carriers, known as tones, remain orthog-
onal after propagation through the ISI channel, a cyclic prefix is used[80, 102].
The cyclic prefix is a copy of the last L data-symbols, placed at the beginning
of the transmitted block. A cyclic prefix can be incorporated into the vector
xtime by setting

xtime =

[
xtime

data

xtime
cp

]
,

where the data xtime
data , [xtime

K , . . . , xtime
1 ]T and the cyclic prefix

xtime
cp , [xtime

K , . . . , xtime
K−L+1]

T .

From (2.2), transmission can be modelled as

ytime = Htoeplitz

[
xtime

data

xtime
cp

]
+ ztime,

= Hcircx
time
data + ztime, (2.3)

where Hcirc is the K × K circulant Toeplitz matrix with

htime , [htime
0 01×K−L−1 htime

L , . . . , htime
1 ]T ,

as its first column. So the effect of the cyclic prefix is to convert the linear
convolution of the channel into a circular convolution. As will be shown in
the following section, since circular convolution in time is equivalent to multi-
plication in frequency the CP ensures that the tones remain orthogonal after
propagation through the channel.

Frequency Domain Transmission

Frequency-domain transmission is now examined in more detail. Define the
frequency-domain symbol to be transmitted on tone k as xfreq

k , and the vector of

frequency-domain symbols xfreq , [x1, . . . , xK ]T .These symbols are efficiently
modulated using the IFFT. So

xtime
data = IKxfreq, (2.4)
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where IK denotes the K-point IDFT matrix. At the receiver the signal ytime

is efficiently demodulated using the FFT. So

yfreq = FKytime, (2.5)

where FK denotes the K-point DFT matrix and yfreq , [y1, . . . , yK ]T . Com-
bining (2.3), (2.4) and (2.5) yields

yfreq = FKHcircIKxfreq + zfreq,

where the frequency-domain noise vector

zfreq , FKztime = [z1, . . . , zK ]T .

Define the frequency-domain transfer function for the channel as

hfreq , [h1, . . . , hK ],

where hk is the channel response on tone k. The frequency-domain transfer
function is

hfreq = FKhtime.

Circulant matrices are diagonalized by the DFT and IDFT matrices, so

FKHcircIK = Hfreq,

where Hfreq = diag{h1, . . . , hK}. Another way of interpreting this is that
circular convolution in the time-domain corresponds to a multiplication in the
frequency domain. Hence the received signal after demodulation is

yfreq = Hfreqx
freq + zfreq,

Since Hfreq is diagonal, transmission now occurs independently on each tone.
The received signal on tone k

yk = hkxk + zk.

Equalization of the channel can be implemented with low complexity by simply
multiplying yk with h−1

k at the receiver. The estimate of the symbol on tone k
is thus

x̂k = h−1
k yk,

= xk + h−1
k zk.

The overall complexity of DMT is O(2K log2 K + K) per transmitted block,
which includes K log2 K operations for modulation (demodulation) with the
IFFT (FFT) and one multiplication per-tone for equalization. Recall that K
denotes the number of DMT tones, whilst L denotes the length of the channel
impulse response. For comparison, the DFEs employed in single-carrier systems
have a complexity of O(LK). Typical values in VDSL are K = 4096 and
L = 320. In this case DMT reduces complexity by a factor of 12, giving it a
significant advantage over single-carrier systems.
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Bitloading

Define the noise power on tone k as σk , E{|zk|2} and the transmit power as
sk , E{|xk|2}, where E {·} denotes the statistical expectation operation. On
tone k the theoretical capacity with DMT is

ck = ∆f log2 (1 + SNRk) ,

where ∆f denotes the tone-spacing and the signal-to-noise ratio (SNR) on tone
k is defined

SNRk , σ−1
k |hk|2 sk.

Most practical coding schemes are characterized by an SNR-gap to capacity Γ,
which determines how closely the code comes to the theoretical capacity. Γ is
a function of the coding gain, desired noise margin and target probability of
error[89, 53]. So in practice the achievable data-rate is

ck = ∆f log2

(
1 + Γ−1SNRk

)
. (2.6)

In DMT systems the receiver measures the SNR on each tone and reports this
back to the transmitter. The transmitter can then adaptively vary the number
of bits used on each tone by choosing different constellation sizes, a technique
known as bitloading. Bitloading allows DMT systems to achieve a high spectral
efficiency. The bitloading on a tone is the number of bits transmitted per DMT-
symbol. Using (2.6) the achievable bitloading on tone k is

bk = f−1
s ∆f log2

(
1 + Γ−1SNRk

)
,

where fs denotes the DMT symbol-rate. The total data-rate of the modem is
then

R = fs

∑

k

bk.

Typically fs = ∆f and

bk = log2

(
1 + Γ−1SNRk

)
.

Powerloading

DSL systems typically operate under a set of spectral masks which ensure that
spectral compatibility is maintained with other communication systems that
may exist within the same binder

sk ≤ smask
k , ∀k. (2.7)

Modems also operate under a total transmit power constraint that arises from
limitations on the analog front-end

∑

k

sk ≤ P.
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A modem can vary the power allocated to each tone sk, and will do so in an
attempt to maximize its total data-rate subject to any spectral mask and total
power constraints

sopt
k = arg max

s1,...,sK

Rk (2.8)

s.t.
∑

k

sk ≤ P

sk ≤ smask
k , ∀k.

This is referred to as powerloading. Since the objective function (2.8) is concave
and the constraints form a convex set, the KKT conditions are sufficient for
optimality. The Karush-Kuhn-Tucker (KKT) conditions imply

sopt
k =

[
1

λ
− Γσk

|hk|2

]smask

k

0

, (2.9)

where [x]ba , max (a, min(x, b)). The waterfilling level 1/λ must be chosen such
that either the power constraint is tight

∑
k sk = P , or

∑
k sk < P and the

modem transmits at mask on all tones λ = 0. Efficient algorithms exist to find
the appropriate λ with complexity O(K log K)[12].

Provided a powerful enough error-correcting code is used, powerloading allows
DMT systems to operate arbitrarily close to the theoretical channel capacity.
The natural way in which DMT systems implement powerloading is one of their
major advantages over single-carrier systems.

2.1.2 Multi-user Channels

So far the discussion has been restricted to DSL systems operating in isolation.
This section considers the interaction of several DSL modems operating within
the same binder. A multi-user channel model is developed that incorporates
crosstalk effects.

Multi-user Transmission

Consider several modems operating within the same binder as depicted in Fig.
2.2. The modems are assumed to be synchronized and transmit simultaneously.
The discrete-time signal after sampling at rate Fs at receiver n is

ytime,n
i =

L∑

l=0


htime,n,n

l xtime,n
i−l +

∑

m6=n

htime,n,m
l xtime,m

i−l


+ ztime,n

i , (2.10)
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Figure 2.2: Multi-user Transmission

where xtime,n
i is the time-domain sequence transmitted by modem n. Here

htime,n,m
l , hn,m(lTs) where hn,m(t) denotes the continuous-time impulse re-

sponse of the channel from transmitter m to receiver n. When m = n, hn,m(t)
is a direct channel. When m 6= n, hn,m(t) is a crosstalk channel. The first term
in (2.10) is the signal of interest for receiver n, whilst the second term is the
crosstalk from all other transmitters.

The additive Gaussian noise sequence experienced by receiver n is denoted
ztime,n

i . L is now chosen such that htime,n,m
l = 0 for all n,m, and l > L. As

before, DMT modulation converts the frequency-selective channel into several
independent sub-channels, or tones. Denote the gain on tone k from trans-
mitter m to receiver n as hn,m

k . This can be found through the DFT of the
corresponding impulse response

[hn,m
1 , . . . , hn,m

K ]
T

= FK

[
htime,n,m

0 01×K−L−1 htime,n,m
L , . . . , htime,n,m

1

]T
.

The signal at receiver n on tone k in the multi-user case is

yn
k =

N∑

m=1

hn,m
k xm

k + zn
k , (2.11)

where N denotes the number of users in the binder. Equation (2.11) can be
expressed in matrix form as follows. Define the vectors xk , [x1

k, · · · , xN
k ]T ,

yk , [y1
k, . . . , yN

k ]T and zk , [z1
k, . . . , zN

k ]T which contain the transmitted, re-
ceived and noise signals for all modems on tone k respectively. Define the
multi-user channel matrix as Hk , [hn,m

k ]. The diagonal elements of Hk con-
tain the direct channels whilst the off-diagonal elements contain the crosstalk
channels. Transmission on tone k can now be written as

yk = Hkxk + zk . (2.12)

Empirical Channel Models
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Table 2.1: RLCG Parameters

Cable Type TP1 TP2
diameter (mm) 0.4 0.5

r0c (Ω/km) 286.176 174.559
ac 0.1476962 0.0530735

l0 (µH/km) 675.369 617.295
l∞ (µH/km) 488.952 478.971

b 0.929 1.152
fm (kHz) 806.339 553.760

c∞(nF/km) 49 50
g0 (n0/km) 43 0.00023487476

ge 0.7 1.38

Exhaustive measurement campaigns have been made to model the direct and
crosstalk channels in DSL networks. As a result the direct channel of a twisted-
pair can be accurately estimated using an incremental RLCG model which
defines the resistance, inductance, capacitance and conductance per kilometer
of twisted pair. The models of R, L, C, and G for copper cable are

Rk =
(
r4
0c + acf

2
k

)1/4
,

Lk =
(
l0 + l∞(fk/fm)b

) (
1 + (fk/fm)b

)−1
,

Ck = c∞,

Gk = g0 (fk)ge ,

where fk , ∆f ·k is the frequency on tone k in Hz[6]. The models are frequency
dependent. The parameters r0c, ac, l0, l∞, fm, b, c∞, g0 and ge depend on the
cable diameter, materials and construction. Values of these parameters for the
standard cable types TP1 and TP2 are listed in Tab. 2.1.

The propagation constant per unit length for the twisted pair at tone k is

γk =
√

(Rk + j2πfkLk) (Gk + j2πfkCk).

The characteristic impedance of the line on tone k is defined as

Z0,k ,

√
Rk + j2πfkLk

Gk + j2πfkLk
.

The direct channel transfer function for a twisted-pair of length d km can now
be modelled as

hk(d) =
ZL + ZS

ZL cosh(γkd) + Z0,k sinh(γkd) + ZSZLZ−1
0,k sinh(γkd) + ZS cosh(γkd)

,

(2.13)
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where ZS is the source impedance of the transmitting modem and ZL is the
load impedance of the receiving modem.

Empirical models for crosstalk channels are based on 1% worst-case analysis.
So in 99% of cases the crosstalk is less severe than the empirical models suggest.
Such worst-case models are used to ensure that DSL modems operate for the
majority of customers.

In the 1% worst-case models, the crosstalk channel gain between two lines is

hn,m
k = αk,n,m |hk(dn,m)| ,

where

αk,n,m , Kxf · (fk/f0)
√

dn,m
coupling (2.14)

and f0 = 1 MHz and Kxf = 0.0056[7]. As shown in Fig. 2.3, dn,m
coupling is the

length of the binder segment over which coupling between line m and line n
occurs, and is measured in kilometers. Note that

dn,m
coupling ≤ min(dm, dn)

where dn is the length of line n. The entire distance from the crosstalk source
(transmitter m) to the crosstalk victim (receiver n) is dn,m. The term hk(dn,m)
denotes the transfer function for a channel of length dn,m as defined in (2.13).

Measured Channels

Measurements of direct and crosstalk channels have also been made on real
cables for a limited number of cable lengths. These can be used to obtain a
more realistic evaluation of DSL system performance.

Shown in Fig. 2.4 is the direct channel transfer function from a 1 km line of
diameter 0.5 mm. The empirical transfer function is included for comparison.
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Figure 2.4: Direct Channel Transfer Functions (1 km cable, 0.5 mm pairs)

It is clear that the empirical and measured transfer function match quite well
for the direct channels. This is generally the case.

Shown in Fig. 2.5 is a crosstalk channel transfer function from another 1 km
line into the 1 km line just described. As can be seen, the empirical model is
quite poor at predicting the transfer function of the crosstalk channel. There
are several periodic dips in the measured transfer function. These result from
the rotation of the different twisted-pairs around one-another within the binder,
an effect not included in the empirical models[52]. Despite this the empirical
models are still useful for worst-case analysis. They allow the performance of
DSL systems to be guaranteed in 99% of deployments, since they are based on
1% worst-case statistics.

More advanced empirical models have been proposed which take the rotation of
twisted-pairs into account[52]. This work is still at an early stage and requires
more thorough verification before it can be used for accurately predicting DSL
system performance.

This thesis uses a combination of empirical models and actual channel mea-
surements to evaluate performance.

2.2 Multi-user Information Theory

Information theory is a useful tool for characterizing the achievable capacity of
a communication channel. It can also yield insight into the design of optimal
communication systems.
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Figure 2.5: Crosstalk Channel Transfer Functions (1 km cable, 0.5 mm pairs)

Multi-user information theory is concerned with the analysis of multi-user chan-
nels. Since DSL systems operate in the presence of crosstalk, the DSL network
is a multi-user channel. Multi-user information theory is then a valuable tool
for the analysis and design of DSL systems.

2.2.1 Rate Regions

In multi-user channels there is an inherent trade-off between the rates of dif-
ferent users. Increasing the rate of one user, by increasing his transmit power,
causes more interference to the other users in the network, and their rate is sub-
sequently decreased. Similarly, there may be a limitation on the total amount
of transmit power. Allocating more power to one user may preclude the allo-
cation of power to another user.

Due to this inherent trade-off, it is not possible to characterize the capacity of
a multi-user channel with a single number. Rather, capacity must be charac-
terized through a rate region, a set of all possible rate combinations that can
be achieved by the users in a channel. An example rate region is shown in Fig.
2.6. The operating point a is achievable, the operating point b is not.

The rate region depends on the type of channel under consideration. There are
many different types of multi-user channel; each type is characterized by the
degree of co-ordination available between transmitters or receivers. The most
relevant to DSL will now be described.

2.2.2 Interference Channel
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Figure 2.7: Interference Channel

In the interference channel (IC) no signal level co-ordination is possible between
transmitters or receivers. That is, neither joint encoding at the transmitters
nor decoding at the receivers is possible. Each receiver decodes its signal inde-
pendently and in the presence of the interference from other users as depicted
in Fig. 2.7.

The capacity region of the IC is unknown and has been an important problem
in information theory since it was first introduced by Shannon[86]. Despite
this in a few special cases the capacity region is known. For example, Carleil
and Sato showed that very strong interference is equivalent to no interference
at all[16, 82]. The strong interference assumption is

|hn,m
k |2

σn
k

≥ |hm,m
k |2

σm
k

, ∀n, m 6= n. (2.15)
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In Carleil’s scheme a receiver first detects the interference from the other users,
treating its own signal of interest as noise. The interfering signals can be
detected without error as a result of the strong interference assumption. The
interference can then be removed, allowing the receiver to detect its signal of
interest as if interference were not present.

In DSL the crosstalk channels are typically weaker than the direct channels; the
strong interference condition does not hold, and the interference subtraction
scheme just described is inapplicable. Furthermore, these schemes are com-
putationally complex. For this reason current DSL systems treat crosstalk as
noise. The bitloading of modem n on tone k is then limited to

bn
k = I (xn

k ; yn
k ) ,

where I(a; b) denotes the mutual information between a and b, and we assume
fs = ∆f . As the number of crosstalkers becomes large the interference tends to
a Gaussian distribution[75], and the bitloading of modem n on tone k becomes

bn
k = log2

(
1 +

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σn

k

)
. (2.16)

The total rate of modem n is thus Rn = fs

∑
k bn

k . Each modem has a total
power constraint. Denote the total power constraint of modem n as P n. So

∆f

∑

k

sn
k ≤ P n,

where P n denotes the total power that modem n can transmit. This arises
from limitations on each modem’s analog front-end. For convenience this is
reformulated as ∑

k

sn
k ≤ Pn, ∀n, (2.17)

where Pn , Pn/∆f . So assuming that interference is treated as noise, the
capacity region of the IC is

CIC =
⋃

P
k

sn
k
≤Pn,∀n

{
(R1, . . . , RN ) : Rn ≤ fs

∑

k

I (xn
k ; yn

k )

}
.

Here the union is taken across all possible transmit spectra in order to charac-
terize the capacity region. In practice this is prohibitively complex and a more
efficient search algorithm is required. This is discussed further in Chapter 2.7.

2.2.3 Multi-access Channel

In the multi-access channel (MAC) co-ordination is possible between receivers,
and they can jointly decode the signals from the different transmitters. No
co-ordination is possible between transmitters. This is depicted in Fig. 2.8.
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Figure 2.8: Multi-access Channel

An example of a MAC is the uplink of a wireless LAN, where many laptops
transmit to a single base-station. Another example is the upstream DSL chan-
nel, where many CP transmitters communicate to a set of co-ordinated CO
receivers that use joint decoding to cancel crosstalk. This is discussed further
in Chapter 4.

Let us start by considering the so-called single-user bound, which is the ca-
pacity achieved when only one user (CP modem) transmits and all receivers
(CO modems) are used to detect that user. Since only one user transmits the
received signal at the CO is

yk = hn
kxn

k + zk ,

where hn
k , [Hk]col n . Using the single-user bound the achievable bitloading of

user n on tone k is limited to

bn
k ≤ I(xn

k ;yk),

= bn
k,mac, (2.18)

where I(a; b) denotes the mutual information between a and b. Here

bn
k,mac , log2

(
1 + sn

khn
kS−1

z,kh
n
k

)
,

where the noise correlation is defined Sz,k , E
{
zkz

H
k

}
. With spatially white

background noise, Sz,k = σkIN , the single-user bound simplifies to

bn
k,mac = log2

(
1 + σ−1

k sn
k ‖hn

k‖2
2

)
.

In the single-user case with spatially white noise, the single-user bound can be
achieved by applying a matched filter to the received vector yk. The estimate
of the transmitted symbol is then

x̂n
k = ‖hn

k‖−2
2 (hn

k )
H

yk,
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Figure 2.9: Broadcast Channel

= xn
k + ‖hn

k‖
−2
2 (hn

k )
H

zk,

which leads to a data-rate of bn
k,mac. Here (·)H denotes the Hermitian transpose.

In the multi-user case, the single-user bound can be achieved by detecting a
user last in a successive interference cancellation (SIC) structure[59, 96].

From (2.18), the total rate of user n can be bounded

Rn ≤ fs

∑

k

bn
k,mac.

Assuming that a total power constraint (2.17) applies to each modem, the MAC
capacity region can be bounded

CMAC ⊂
⋃

P
k sn

k
≤Pn,∀n

{
(R1, . . . , RN ) : Rn ≤ fs

∑

k

bn
k,mac

}
.

In Chapter 4 it is shown that this bound is tight for DSL channels. The
bound is then sufficient for the evaluation of multi-user techniques in DSL. An
exact characterization of the MAC capacity region is possible and can be useful
for other applications, such as wireless communications, where the single-user
bound is not tight. The interested reader is directed to [93, 108, 100, 105].

2.2.4 Broadcast Channel

In the Broadcast Channel (BC) co-ordination is possible between transmitters,
and they can jointly encode the signals intended for different receivers. No
co-ordination is possible between receivers. This is depicted in Fig. 2.9.

An example of a BC is the downlink of a wireless LAN, where a single base-
station transmits to several laptops. Another example is the downstream DSL
channel, where a set of co-ordinated CO transmitters communicate to multiple
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CP receivers. The CO transmitters jointly encode their signals to precompen-
sate for the effects of crosstalk. This is discussed further in Chapter 5.

Considering the single-user bound, which is the capacity achieved when all
transmitters (CO modems) are used to communicate to a single receiver (CP
modem). In this case the received signal on the CP modem is

yn
k = h

n

kxk + zk ,

where h
n

k , [Hk]row n . Using the single-user bound the achievable bitloading
of user n on tone k is limited to

bn
k ≤ I(xk ; yn

k ),

= log2

(
1 + (σn

k )
−1

h
n

kSx,k

(
h

n

k

)H
)

, (2.19)

where the transmit correlation matrix is defined Sx,k , E
{
xkx

H
k

}
. Define the

elements of the correlation matrix sn,m
k , [Sx,k]n,m , and the diagonal elements

sn
k , [Sx,k]n,n . Since Sx,k is positive semi-definite, it follows that

sn,m
k ≤

√
sn

ksm
k , ∀n, m. (2.20)

Now consider the inner-term of (2.19), which is

h
n

kSx,k

(
h

n

k

)H

=
∑

v

hn,v
k

∑

m

sv,m
k conj (hn,m

k ) ,

≤
∑

v

|hn,v
k |

∑

m

√
sv

k

√
sm

k |hn,m
k | ,

=
∑

v

|hn,v
k |

√
sv

k

∑

m

|hn,m
k |

√
sm

k ,

=

(
∑

m

|hn,m
k |

√
sm

k

)2

,

where conj(.) denotes the complex conjugate operation, and (2.20) is used in
the second line. This allows a looser bound to be formed

bn
k ≤ bn

k,bc, (2.21)

where

bn
k,bc , log2


1 + (σn

k )−1

(
∑

m

|hn,m
k |

√
sm

k

)2

 .

In the single-user case the single-user bound can be achieved with a matched
transmit filter

xm
k = conj (hn,m

k ) |hn,m
k |−1√

sm
k x̃n

k ,
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where x̃n
k denotes the quadrature amplitude modulated (QAM) symbol intended

for user n. Without loss of generality, we assume that the power of x̃n
k is set to

unity. This ensures that the PSD level is correct

E
{
|xm

k |2
}

= sm
k .

The received signal at modem n on tone k is then

yn
k =

(
∑

m

|hn,m
k |

√
sm

k

)
x̃n

k + zn
k .

At receiver n an estimate of the transmitted symbol x̃n
k can be formed

x̂n
k =

(
∑

m

|hn,m
k |

√
sm

k

)−1

yk,

= x̃n
k +

(
∑

m

|hn,m
k |

√
sm

k

)−1

zn
k ,

which leads to a data-rate of bn
k,bc. In the multi-user case the single-user bound

can be achieved through dirty paper coding[106, 101].

From (2.21) the total rate of user n can be bounded

Rn ≤ fs

∑

k

bn
k,bc.

Assuming that a total power constraint (2.17) applies to each modem, the BC
capacity region can be bounded

CBC ⊂
⋃

P
k

sn
k
≤Pn,∀n

{
(R1, . . . , RN ) : Rn ≤ fs

∑

k

bn
k,bc

}
.

Chapter 5 shows that this bound is tight in DSL channels. The bound is
then sufficient for the evaluation of multi-user techniques in DSL. An exact
characterization of the BC capacity region is possible and can be useful for other
applications, such as wireless communications, where the single-user bound is
not tight. The interested reader is directed to [106, 101, 62, 104].
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Overview

Crosstalk is a major problem in modern DSL systems such as ADSL and VDSL.
Crosstalk can be mitigated through the coordination of DSL modems. This can
be done either on a spectral or signal level. Spectral coordination is discussed
in this part of the thesis. Signal coordination is discussed in Part II.

Signal level coordination leads to maximum performance. However, for sig-
nal level coordination to be used either the transmitters or receivers must be
co-located. In some situations this is not possible, for example the mixed de-
ployment shown in Fig. 2.10. Here one DSL service is deployed from the CO
and another from a remote terminal (RT). Since neither the head-end modems
nor the CP modems are co-located, it is impossible to coordinate transmission
or reception on a signal level. As a result, the only way to mitigate crosstalk
is through spectral coordination.

Signal coordination increases the run-time complexity of DSL modems signif-
icantly. Spectral coordination, on the other hand, does not increase run-time
complexity. So when the cost of DSL equipment must be kept low, spectral
coordination is preferable.

With spectral coordination the transmit spectra of the modems within a net-
work are limited to minimize the negative effects of crosstalk. Each modem
must achieve a trade-off between maximizing its own data-rate and minimizing
the crosstalk it causes to other modems within the network. The goal is to
achieve a fair trade-off between the rates of the different users.

A classical scenario is shown in Fig. 2.10 where a binder carries a mixture of
CO and RT distributed DSLs. Since the RT is located further downstream
than the CO, it has a relatively strong crosstalk channel into CP1. In some
cases the crosstalk channel from the RT to CP1 can be even stronger than the
direct channel from the CO to CP1. If the RT transmits at full power it will
induce a large amount of crosstalk on the CO distributed line, significantly
reducing its data-rate. This is referred to as the near-far scenario since the
near-end transmitter (RT) causes a huge amount of crosstalk to the far-end

33



34 Overview

h CP1,RT
k

hCP1,CO
k

CP 1

CP 2

RT (Near−end)

CO (Far−end)

Figure 2.10: Mixed Deployment Scenario

receiver (CO). Clearly some power-backoff is necessary on the RT transmitter
to ensure that a fair rate is achieved by the CO line.

From an information theory perspective the DSL network is an interference
channel since signal coordination is not possible. Our goal is to characterize
the capacity region of this interference channel, and the corresponding optimal
transmit spectra.

Chapter 3 investigates the design of optimal transmit spectra for a network
of interfering DSLs. This problem was previously considered intractable since
it requires the solution of a high-dimensional, non-convex optimization. It is
shown that, through the use of a dual-decomposition, the optimization can
be solved in an efficient, tractable way. The resulting algorithm, which we
name optimal spectrum balancing, gives significant gains over existing spectral
coordination techniques, typically doubling or tripling data-rates.

The material in Chapter 3 has been published as [40, 39, 110, 14, 94, 97],
submitted for publication as [20, 95], and has been patented by Alcatel[32].
The optimal spectrum balancing algorithm was submitted to standardization
as [36, 37, 38, 35] and is now part of the draft ANSI standard on Dynamic
Spectrum Management[8].



Chapter 3

Optimal Spectrum

Balancing

3.1 Introduction

This chapter investigates the design of transmit spectra for a network of in-
terfering DSLs1. Static spectrum management is the traditional approach and
employs identical spectral masks for all modems. To ensure widespread deploy-
ment, these masks are based on worst case scenarios[6]. As a result they can
be overly restrictive and lead to poor performance.

Dynamic spectrum management (DSM), a new paradigm, overcomes this prob-
lem by designing the spectra of each modem to match the specific topology of
the network[47, 88, 44]. These spectra are adapted based on the direct and
crosstalk channels seen by the different modems. They are customized to suit
each modem in each particular situation.

A DSM algorithm known as iterative waterfilling was recently proposed and
demonstrates the spectacular performance gains that are possible[107]. An
unanswered question at this point is: How much more can be achieved?

The goal of this chapter is to address this question. The focus is on centralized
spectrum management where a spectrum management center (SMC) is respon-
sible for setting the spectra of the modems within a network. The chapter will
present an algorithm for optimal spectrum balancing in the DSL interference
channel. Assuming that all modems employ discrete multi-tone (DMT) mod-

1The work in this chapter was done in close collaboration with Prof. Wei Yu, University
of Toronto, Canada.
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ulation this algorithm achieves the best possible balance between the rates of
the different modems in the network, allowing operation at any point on the
rate region boundary.

The algorithm is suitable for direct application when a SMC is available. Note
that one disadvantage of centralized algorithms is that when a new line is
activated, or if a line is deactivated, re-optimisation of the modem transmit
spectra is necessary to ensure optimal performance. This is one disadvantage
of centralized algorithms with respect to more autonomous algorithms such as
iterative waterfilling. Furthermore centralized spectrum management requires
a SMC that may not be available in the unbundled case, where multiple oper-
ators share the same binder. In these cases an autonomous algorithm may be
preferred. Optimal spectrum balancing can still be useful here since it provides
an upper bound on performance of all DSM algorithms, both centralized and
autonomous. Furthermore, the spectra generated by the proposed algorithm
provide valuable insight that can be used in autonomous algorithm design.

One may argue, if centralized control is available (via a SMC), why is it
that crosstalk cancellation, enabled through signal coordination, is not imple-
mented? Although crosstalk cancellation leads to greater performance gains,
it is more complex to implement and is not feasible when head-end modems
are not co-located in the same central office (CO) or remote terminal (RT).
Furthermore, since crosstalk cancellation uses signal coordination, it requires
an entirely new design of both the DSL access multiplexer (DSLAM) and cus-
tomer premises (CP) modems. Spectral coordination, on the other hand, only
involves setting the transmit PSD levels of the modems. This can be done with-
out any change to the modem hardware currently deployed in the field and is
feasible to implement right now. We also note that in several specific scenar-
ios crosstalk cancellation is possible even without signal coordination[41, 113].
Whilst performance gains are possible, these techniques are highly complex.
The rest of the chapter assumes that crosstalk cancellation is not performed,
and each modem treats crosstalk as additive noise.

The multi-user DSL channel with no signal coordination is an example of an
interference channel in multi-user information theory. The capacity region and
the optimal code design for the interference channel are long-standing open
problems in information theory. This chapter considers an achievable rate
region for the interference channel within the context of currently deployed
DSL modems in the field. In this case, interference must be treated as noise,
and the optimization of the achievable rate region is reduced to the optimization
of the joint spectra amongst all the users. Hence the solution obtained using
the optimal spectrum balancing algorithm proposed in this chapter, although
not the best possible for the interference channel, is optimal within the current
capabilities of the DSL modems already developed.

The main difficulty in the optimal design of the multi-user spectrum in the
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DSL context is the computational complexity associated with the optimization
problem. The constrained optimization problem is non-convex, and a naive
exhaustive search leads to an exponential complexity in the number of tones
K in the system. In ADSL K = 256 whilst in VDSL K = 4096. This leads to
a computationally intractable problem.

The algorithm presented in this chapter overcomes the exponential complexity
in K through the use of a technique called dual decomposition. The compu-
tational complexity of the proposed algorithm, although linear in K, is still
exponential in the number of users. Nevertheless, it gives a practical way to
compute the achievable rate regions for channels with a small number of users.
Doing so was not possible prior to this work.

Despite the large reduction in complexity that the optimal spectrum balancing
algorithm achieves, in some scenarios it may still be too complex for practical
implementation. To address this issue, a simpler algorithm is developed based
on an iterative approach. This algorithm has a quadratic complexity in the
number of users, and is applicable to existing DSL modems. As will be shown
in Section 3.6, the algorithm exhibits near-optimal performance, yielding sig-
nificant improvement over existing state-of-the-art.

The rest of the chapter is organized as follows. The system model for a net-
work of interfering DSL modems is given in Section 3.2. The problem is then to
characterize the achievable rate region and the corresponding transmit spectra.
This problem is formulated in Section 3.3. Section 3.3.2 describes existing solu-
tions, which are typically heuristic and sub-optimal. In Section 3.3.4 it is shown
that trying to find the optimal solution directly through an exhaustive search
is computationally intractable. Section 3.3.5 and 3.3.6 show that the spectrum
balancing problem has an equivalent dual problem. This can be decomposed
into separate sub-problems that are then solved independently on each tone.
The resulting algorithm, which we name optimal spectrum balancing, is pre-
sented in Section 3.4 and gives an efficient solution to the spectrum balancing
problem. The complexity of the algorithm is discussed in Section 3.4.3. Sec-
tion 3.5 describes a simpler algorithm that solves the spectrum management
problem through an iterative approach. Section 3.6 compares the performance
of the proposed algorithms to existing spectrum balancing techniques. Conclu-
sions are drawn in Section 3.7.

3.2 System Model

This chapter only considers DSM as applied to DMT modulated modems.
Whilst some form of DSM can also be applied to single carrier modems it
often leads to inferior performance since dynamic shaping of the transmit spec-
tra is not possible. As such it is assumed that any non-DMT systems form part
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of the background noise.

It is assumed that each modem treats the interference from other modems as
noise. This is an interference channel, and the achievable bitloading of modem
n on tone k is given by (2.16).

We denote the maximum bitloading that a modem can support as bmax, which
lies in the range 8-15 in current standards[9][3][7]. Since a practical error cor-
rection coding scheme will be employed, the system will experience an SNR-gap
to capacity, denoted as Γ. Modifying (2.16) to incorporate the maximum bit-
loading limitation and the SNR-gap to capacity leads the following bitloading
for modem n on tone k

bn
k , min

(
bmax, log2

(
1 +

1

Γ

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σn

k

))
. (3.1)

The data-rate on line n is then

Rn = fs

∑

k

bn
k .

In practice the relationship between the received signal-to-interference-plus-
noise ratio (SINR) and the bitrate may be more complex and is in fact de-
pendent on the coding scheme employed within the modem. In particular the
maximum bitloading will apply to the encoded data-rate. In this chapter (3.1)
will be used for simplicity however the algorithms presented here can be applied
to any arbitrary function that relates the bitloading to the SINR on each tone.

3.3 The Spectrum Management Problem

We restrict our attention to the two user case for ease of explanation. Exten-
sions to more than two users will be discussed in Section 3.4.2. The spectrum
management problem for the two user case is defined as

max
s1,s2

R2 s.t. R1 ≥ Rtarget
1 , (3.2)

where Rtarget
n denotes the target data-rate of user n, and the PSD vector of user

n is defined sn , [sn
1 , . . . , sn

K ]. As described in Section 2.2.1, the rate region is a
plot of all possible operating points, or rate combinations that can be achieved
in a multi-user channel. Operating points on the boundary of the region are
said to be optimal. These points and their corresponding PSD combinations
can be characterized by solving the spectrum management problem (3.2) for a
range of values of Rtarget

1 . This is the goal of this chapter.
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3.3.1 Constraints

The optimisation (3.2) is typically subject to a total power constraint on each
modem ∑

k

sn
k ≤ Pn, n = 1, 2. (3.3)

Spectral mask constraints may also apply

sn
k ≤ smask

k , ∀k, n. (3.4)

Naturally the spectra must also be non-negative.

sn
k ≥ 0, ∀n, k. (3.5)

3.3.2 Existing Solutions

This Section will give a review of existing solutions to the spectrum manage-
ment problem. These solutions are typically heuristic and result in sub-optimal
solutions.

Flat Power Back-off

With the flat power back-off method a modem transmits the same PSD on all
tones[73]. This PSD is set to the minimum possible value that still allows the
modem to achieve its target data-rate. The PSD of user n with flat power
back-off is set to sn

flat on all tones, where sn
flat is chosen such that

fs

∑

k

bn
k (s1

flat, s
2
flat) = Rtarget

n , ∀n.

Here bn
k (s1

k, s2
k) denotes the bitloading of user n corresponding to the PSD

combination (s1
k, s2

k) as calculated by (3.1). Flat power back-off cannot vary
the degree of power back-off with frequency. Since crosstalk coupling varies
significantly with frequency this is a major disadvantage.

Reference PSD Method

In the reference PSD method each modem sets its transmit PSD such that the
corresponding received PSD is equal to the reference PSD [79, 83, 73]. Consider
modem n and its transmit PSD on the kth tone, sn

k . The corresponding received
PSD will be

sn
k,rx = |hn,n

k |2 sn
k . (3.6)

The reference PSD method requires that

sn
k,rx = sn

k,ref.PSD, ∀n, k.
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Combining this with (3.6) implies that the transmit PSD must be

sn
k = |hn,n

k |−2
sn

k,ref PSD.

The reference PSD method has been adopted by standardization groups for use
in VDSL2. In the standards the reference PSD is specified as

sn
k,ref PSD =

{
−60− 22

√
fk dBm/Hz, in US band 1 (k < 1972);

−60− 17.18
√

fk dBm/Hz, in US band 2 (k ≥ 1972),

where fk denotes the frequency in MHz on tone k[9, 7]. The logic behind this
choice of reference PSD is as follows. First note that the attenuation on an L
km line can be well approximated by

18.0975L
√

fk dB.

So 22
√

fk is the attenuation experienced by a 1216m line. If a modem transmits
at the spectral mask, which is −60 dBm/Hz, then the received PSD on a 1216
m line will be −60−22

√
fk dBm/Hz. So the reference PSD method forces each

line to adjust its transmit PSD, such that the corresponding received PSD is
equal to the received PSD of a 1216 m line. This forces all lines to perform in
a similar way, there-by limiting the crosstalk that lines cause one-another and
assuring a fair rate-allocation for all lines. This approach is also known as the
reference length method ; here the reference length is set to 1216m in US band
1[73]. Unfortunately all lines will now achieve the same data-rate as a 1216 m
line, in US band 1, regardless of line length. So shorter lines cannot exploit
their lower channel attenuation to achieve higher data-rates.

Longer lines are generally not active in US band 2 since their direct channel
attenuation is too high. For this reason less PBO is required in US band 2
than in US band 1. To take this into account, the reference length in US band
2 is decreased to 950 m, allowing modems to transmit with a higher PSD in
that band. The attenuation of a 950 m line is approximately 17.18

√
fk, which

motivates the choice for the reference PSD in US band 2. The use of different
reference lengths in different frequency ranges is also known as the multiple
reference length method [73]. The choice of 1216 m and 950 m as the reference
lengths was based on an optimization over several representative scenarios. The
goal of the optimization was to ensure that the reach of several representative
services does not decrease by more than 10% as a result of crosstalk[79, 83].

The short-fall of the reference PSD method is that it forces all lines to adopt
the same pair of reference lengths for each US band. Furthermore, the transmit
PSD is forced to be of the form −60−18.0975L

√
fk dBm/Hz. These constraints

reduce flexibility in the allocation of transmit spectra and can lead to poor
performance.

2In ADSL a spectrum management technique has not yet been standardized[1].
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Reference Noise Method

The reference noise method works with the weighted rate-sum, which will be
described in Section 3.3.5. Essentially maximizing the weighted rate-sum,

wR1 + (1 − w)R2,

is equivalent to the original spectrum management problem (3.2) provided a
correct weight w is chosen[87].

Since the weighted rate-sum optimization is non-convex, the reference noise
method makes the assumption of high SINR[87]. Under this assumption the
bitloading of user n on tone k can be approximated as

bn
k ' log2

(
1

Γ

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σn

k

)
.

Total power constraints (3.3) are not considered and the optimization is done
only under spectral mask (3.4) and non-negativity (3.5) constraints. Continu-
ous bitloading is assumed and the maximum bitloading constraint is neglected.
In the 2 user case this leads to a convex optimization that can be solved in
closed form. The resulting optimal PSDs for tone k are

s1
k =

[
w

1 − 2w
σ2

k

∣∣∣h2,1
k

∣∣∣
−2
]smask

k

0

, (3.7)

s2
k =

[
1 − w

2w − 1
σ1

k

∣∣∣h1,2
k

∣∣∣
−2
]smask

k

0

,

where [x]ba , min (max (x, a) , b). Note that with such PSDs the crosstalk
experienced by line 1 will be 1−w

2w−1σ1
k, which is a scaled version of the noise

experienced by line 1. The same can be said of line 2. Note that if w > 0.5,
then s1

k = 0, and if w < 0.5, then s2
k = 0. This is quite counter-intuitive, since a

higher w should place more importance on the data-rate of user 1. Furthermore,
there is a singularity at w = 0.5. Using (3.7) with values of w 6= 0.5 will result
in only one active user on each tone. This frequency division multiple access
(FDMA) approach typically leads to poor performance in DSL.

In the general N user case no closed form solution for maximizing the weighted
rate-sum exists. Despite this (3.7) can still be applied as a somewhat heuristic
approach. The weighting term w

1−2w in (3.7) is set to unity which leads to the
following transmit spectra for user n on tone k

sn
k,rnoise =

[
σref

k

∣∣∣href,n
k

∣∣∣
−2
]smask

k

0

.

Here σref
k denotes the so-called reference noise. This is the noise experienced

by a theoretical reference line. The transfer function href,n
k is the crosstalk
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channel from transmitter n into the reference line. Both the reference noise
and reference line are parameters that must be chosen by the modem designer.
Typically the reference line is the longest line in the binder, and the reference
noise is chosen as a representative noise PSD.

Note that with the reference noise method, the crosstalk that each line in-
duces on the reference line is equal to the reference noise. This is the defining
characteristic of this method.

Section 3.6 will show that the reference noise method is near-optimal at low
frequencies, where the high-SINR assumption is valid. Unfortunately at high
frequencies the assumption is invalid and the reference noise method gives poor
performance.

Iterative Waterfilling

Iterative waterfilling is a power allocation algorithm based on the concept of
greedy optimization[107, 109]. Each line tries to selfishly maximize its own
data-rate under a given power constraint Pn,

sn
k,iw = arg max

sn

∑

k

log2

(
1 +

1

Γ

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σn

k

)
,

s.t.
∑

k

sn
k ≤ Pn,

sn
k ≥ 0, ∀k.

In the continuous bitloading case this leads to a waterfilling PSD similar to
that described in (2.9). In iterative waterfilling spectral masks are not applied.
Furthermore, each user must waterfill against both the background noise and
interference of other users. The resulting PSD for user n on tone k is

sn
k,iw =

[
1

λn
− Γ

∑
m6=n |hn,m

k |2 sm
k + σn

k

|hn,n
k |2

]+

, (3.8)

where [x]
+

, max(0, x) and λn is chosen such that
∑

k sn
k = Pn[107]. In

iterative waterfilling the modem sets its total power Pn to the minimum possible
value that still allows the modem to achieve its target data-rate[107]. Put
another way, the waterfilling level, λn, is chosen such that

fs

∑

k

log2

(
1 +

1

Γ

|hn,n
k |2 sn

k,iw(λn)
∑

m6=n |hn,m
k |2 sm

k + σn
k

)
= Rtarget

n ,

where sn
k,iw(λn) denotes the waterfilling PSD with waterfilling level λn, as cal-

culated by (3.8).
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Algorithm 3.1 Iterative Waterfilling
repeat
for n = 1, . . . , N

repeat
sn

k = sn
k,iw(λn), ∀k, found using (3.8)

if fs

∑
k bn

k < Rtarget
n and

∑
k sn

k ≤ Pn, then increase λn, else decrease λn

until convergence
end

until convergence

With iterative waterfilling the users adjust their PSDs one-by-one according to
(3.8). The process iterates through all the users until convergence is reached.
The algorithm is listed as Alg. 3.1.

CO distributed lines are typically long and experience large attenuation at
high frequencies. As a result they are only active on low frequencies. The
RT distributed lines, on the other hand, are typically short and experience a
constant attenuation with frequency. The best strategy is then for the RT to
switch off its lower tones and transmit only in the high frequencies, where the
CO lines are not active. The RT still achieves a good data-rate, and the lower
frequencies are left free for the CO lines to use.

Unfortunately iterative waterfilling does not follow this approach. RT dis-
tributed lines are typically short and experience little crosstalk from CO dis-
tributed lines. As a result the transmit PSDs with iterative waterfilling are flat
on RT distributed lines. The low frequencies are not switched off to protect
the CO lines and this leads to poor performance.

Several studies have been made on the stability[94, 97], implementation[14] and
expected gain[98] of iterative waterfilling.

Other Techniques

In [43] an optimal solution was formulated to the spectrum balancing prob-
lem based on simulated annealing. Unfortunately, simulated annealing cannot
guarantee convergence to the global optimum, and the convergence speed can
also be slow. Furthermore, due to the high complexity of this algorithm, the
transmit PSD is constrained to be flat within each transmission band. Whilst
this reduces complexity, it significantly limits the search space of the algorithm
and generally leads to poor performance.

An attempt to formulate an optimal solution to the spectrum balancing prob-
lem was also made in [85]. In the proposed algorithm, several symmetry con-
straints were imposed on the transmit spectra to ensure a convex optimization.
These constraints limit the search space of the algorithm and generally lead to
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poor performance.

In [45] the optimal solution to the spectrum balancing problem was considered
for the 2 user case. It was shown that if the crosstalk channels are very weak
the weighted rate-sum optimization (3.11) is approximately convex. This allows
the optimal transmit spectra to be found efficiently through the use of convex
optimization techniques. Unfortunately this approach does not extend to more
than 2 users. Furthermore, in VDSL or in RT distributed ADSL, the crosstalk
channels are not sufficiently weak and the proposed algorithm is inapplicable.

In [46] the same authors considered the spectrum balancing problem under a
strong interference condition (2.15). Unfortunately in many cases the crosstalk
is not strong enough to satisfy (2.15), but is too strong to satisfy the weak
interference condition required for the algorithm in [45]. Furthermore, the al-
gorithm in [46] assumes that the strong interference is detected and subtracted
prior to the detection of the signal of interest. Such advanced interference sub-
traction techniques are highly complex and are not available in current DSL
systems.

3.3.3 Bitloading

Continuous Bitloading

Let us now return our attention to the spectrum management problem (3.2)
presented earlier. Consider the case where the modems can support any pos-
sible bitloading. Denote the accuracy with which modems can control their
transmit PSD as ∆s. In current standards ∆s is set to 0.5 dBm/Hz[5]. The
total power (3.3) and spectral mask constraints (3.4) make it possible to upper
bound the transmit power on any tone

sn
k ≤ sn,max

k ,

where sn,max
k , min(Pn, smask

k ). Hence the range of sn
k can be limited to

sn
k ∈ {0, ∆s, . . . , s

n,max
k }.

So for the 2 user case on tone k there are qk =
∏2

n=1

(
sn,max

k ∆−1
s + 1

)
possible

PSD combinations.

Discrete Bitloading

In practice DSL modems can only support a fixed set of discrete bitloadings.
So the search space can be reduced to the PSDs corresponding to these ex-
act bitloadings, reducing complexity considerably without affecting optimality.
Define the vector bk , [b1

k, . . . , bN
k ]T , which contains the bitloading of all users

on tone k, and sk , [s1
k, . . . , sN

k ]T , which contains the PSD of all users on tone
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k. Provided that bn
k ≤ bmax, ∀n, then (3.1) can be used to find the PSD com-

bination sk corresponding to a particular bitloading combination bk as is now
shown. First define Ak , an,m

k where

an,m
k ,

{
0 n = m,

Γ|hn,m
k |2 n 6= m.

Also define σk , Γ[σ1
k, . . . , σN

k ]T , Dk , diag{|h1,1
k |2, . . . , |hN,N

k |2} and Λk ,

diag{2b1k − 1, . . . , 2bN
k − 1}. Since bn

k ≤ bmax, (3.1) can be rewritten as

|hn,n
k |2 sn

k − Γ(2bn
k − 1)

∑

m6=n

|hn,m
k |2 sm

k = Γ(2bn
k − 1)σn

k , ∀n. (3.9)

Note that taking (3.9) for each n forms a set of n linear equations in sk. These
can be written in matrix form as

(Dk − ΛkAk)sk = Λkσk.

The PSD combination required to support a particular bitloading combination
bk is then

sk = (Dk − ΛkAk)
−1

Λkσk. (3.10)

In the remainder of the chapter for the 2 user case, sn
k (b1

k, b2
k) is used to denote

the PSD of user n corresponding to the bitloadings b1
k, b2

k as calculated by
(3.10). Hence the range of PSD combinations (s1

k, s2
k) can be limited to

(s1
k, s2

k) ∈
{(

s1
k(b1

k, b2
k), s2

k(b1
k, b2

k)
)
| bn

k ∈ {0, . . . , bmax}, ∀n
}

.

So on tone k there are qk = (bmax + 1)
2

possible PSD combinations.

3.3.4 Exhaustive Search

At this point a simplistic algorithm could be proposed to find the optimal PSDs
based on an exhaustive search. On tone k there are qk possible PSD combina-
tions. Taking all possible PSD levels across all tones results in

∏
k qk possible

PSD combinations. The feasibility of each PSD combination is determined
based on any power constraints as described in Section 3.3.1, and on the target
rate constraint for user 1. The PSD combination that maximizes the data-rate
of user 2 is then selected.

Unfortunately whilst this algorithm is simple to implement, its complexity in
the discrete bitloading case is O((bmax + 1)2K). With K = 256 in ADSL and
K = 4096 in VDSL, this results in a computationally intractable problem. In
the continuous bitloading case the complexity is even higher.

So an exhaustive search for the optimal PSDs leads to a computationally in-
tractable problem. The fundamental reason behind this is as follows. The
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target rate constraint for the first line and the total power constraint associ-
ated with each line couples the power allocation problem across frequency. As
such the PSD combination must be searched in a joint fashion across all tones.
This results in an exponential complexity in K and an intractable problem.

The following sections will show that the dual decomposition approach can
be used to transform this problem into an equivalent one that has a linear
complexity in K and is tractable. Since the development has many stages a
brief overview is given here before proceeding with a detailed explanation in
sections 3.3.5, 3.3.6, and 3.4.

To start with, Section 3.3.5 replaces the original optimisation problem (3.2),
with a weighted rate-sum maximization. With a correctly chosen weight w,
maximizing the weighted rate-sum implicitly enforces the target rate constraint
on user 1.

In Section 3.3.6 the power constrained optimisation is replaced by an equiva-
lent dual problem. This dual problem consists of an unconstrained optimisation
of a Lagrangian. In the Lagrangian the total power constraints are enforced
through the use of Lagrangian multipliers which form part of the objective
function. When the Lagrangian multipliers are chosen correctly, maximizing
the Lagrangian will implicitly enforce the power constraints. The power con-
straints need not be explicitly enforced and the problem can be decoupled
across frequency.

After this decoupling the optimisation can be solved by maximizing the La-
grangian independently on each tone, an approach known as dual decomposi-
tion. This leads to a complexity that is linear, rather than exponential, in K
and the problem becomes computationally tractable. This is the main innova-
tion in this chapter.

The dual decomposition method is a commonly used approach in convex op-
timization theory for solving constrained optimization problems through an
equivalent unconstrained dual-problem. The dual problem is chosen so that it
can be decomposed into several simpler sub-problems. The dual decomposi-
tion method has been applied in other communication problems with convex
objective functions such as joint routing and resource allocation[103] and power
allocation in the vector multiple access channel[110]. This work shows that the
dual decomposition method can also be applied to non-convex optimizations.

3.3.5 The Weighted Rate-sum

We start by considering the following optimization problem where the objective
is to maximize the weighted rate-sum

max
s1,s2

wR1 + (1 − w)R2. (3.11)
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wR1 + (1 − w)R2 > κ
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Figure 3.1: Optimality of A in the weighted rate-sum (3.11) implies optimality
in the spectrum management problem (3.2)

The following theorem shows that solving this problem is equivalent to solving
the original spectrum management problem (3.2).

Theorem 3.1 For any 0 ≤ w ≤ 1, there exists at least one Rtarget
1 for which

the weighted rate-sum optimization (3.11) is equivalent to the original spectrum
management problem (3.2).

Proof : The proof is made by illustration. As shown in the rate region in
Fig. 3.1, for any w ∈ [0, 1] there will be at least one point that maximizes the
weighted rate-sum. If there are multiple optimal points the optimization search
will need to explore each point in turn. In this case there are two points A and
C. Consider one of these points A , (Ra

1 , Ra
2). Assume that there exists some

other point in the rate region B , (Rb
1, R

b
2) such that Rb

1 > Ra
1 and Rb

2 > Ra
2 .

This would imply that point B leads to a larger weighted rate-sum than point
A, but this is contradicted by the optimality of point A in the weighted rate-
sum (3.11). So no such point B can exist. Hence Ra

2 is the highest rate for
line 2 which will allow a target rate of Ra

1 be achieved on line 1. This implies
that point A is optimal in terms of the original spectrum management problem
(3.2) for the target rate Rtarget

1 = Ra
1 .

In Section 3.4 the optimal spectrum balancing algorithm is described. It finds
the optimal solution to (3.11) for any particular w. Theorem 3.1 implies that
solving (3.11) is equivalent to solving (3.2) for some particular Rtarget

1 . So the
proposed algorithm is guaranteed to always yield an optimal solution to the
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Figure 3.2: Operating points in X∩Y can be found through a weighted rate-sum
optimization

spectrum management problem (3.2). The full proof is deferred to Theorem
3.4 and Appendix A.

By sweeping through different values of w a large portion of the rate region can
be characterized. Unfortunately points which lie on the interior of the convex
hull of the rate region, e.g. point D in Fig. 3.2, cannot be found with the
proposed algorithm. This is because these points are not optimal in terms of a
weighted rate-sum (3.11). For example in Fig. 3.2 both A and B are superior
to point D. This is one of the problems inherent to the use of the weighted
rate-sum as an optimization metric, however the weighted rate-sum appears
difficult to avoid since trying to solve (3.2) directly leads to an exponential
complexity in K and an intractable problem.

Fortunately all achievable points on the convex hull of the rate region can be
characterized using a weighted rate-sum and hence can be found using optimal
spectrum balancing. This statement is formalized in the following theorem.

Theorem 3.2 For any rate region X, define X as the boundary of X, Y as the
convex hull of X, and Y as the boundary of Y. Consider any operating point
C , (Rc

1, R
c
2) which is achievable C ∈ X and on the boundary of the convex hull

of the rate region C ∈ Y as depicted in Fig. 3.2. There exists some w such that
the PSDs at point C can be found through a weighted rate-sum maximization.
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Proof : C is on the boundary of the convex set Y. So there exists no point
D , (Rd

1 , R
d
2) ∈ Y such that Rd

1 > Rc
1 and Rd

2 > Rc
2. This implies that for

some w

wRc
1 + (1 − w)Rc

2 ≥ wRd
1 + (1 − w)Rd

2 , ∀ (Rd
1 , R

d
2) ∈ Y.

Now since X ⊂ Y

wRc
1 + (1 − w)Rc

2 ≥ wRd
1 + (1 − w)Rd

2 , ∀ (Rd
1 , R

d
2) ∈ X.

So the point C gives the maximum weighted rate-sum of all points within the
rate region X for some particular weight w. Hence the point C is optimal in
the weighted rate-sum (3.11) for that w and can be found through a weighted
rate-sum maximization.

Corollary 3.3 For any convex rate-region, all optimal operating points can be
found through a weighted rate-sum optimization.

Proof : In a convex rate region, the boundary of the convex hull Y, contains
the entire boundary of the rate region and X = Y. All optimal operating
points in terms of the original spectrum management problem (3.2) lie on the
boundary of the rate region X. Hence Theorem 3.2 implies that all optimal
operating points can be found through a weighted rate-sum optimization.

Theorem 3.2 implies that any achievable operating point on the boundary of
the convex hull of the rate region can be found through a weighted rate-sum
optimization. If the rate region is close to being convex, then the majority of
the optimal operating points can be found. Thankfully this is the case in DSL
channels as is now explained.

In the wireline medium there is some correlation between the channels on neigh-
bouring tones. If the channel is sampled finely enough then neighbouring tones
will see almost the same channels (both direct and crosstalk).

Imagine that the tone spacing is fine enough such that hn,m
k ' hn,m

k+l , 0 ≤
l ≤ L − 1. Consider two points in the rate region, A = (Ra

1 , Ra
2) and B =

(Rb
1, R

b
2) and their corresponding PSDs (s1,a

k , s2,a
k ) and (s1,b

k , s2,b
k ). It is possible

to operate at a point E = ( l
LRa

1 + L−l
L Rb

1,
l
LRa

2 + L−l
L Rb

2) for any 0 ≤ l ≤ L− 1

as depicted in Fig. 3.2. This is done by setting the PSDs to (s1,a
k , s2,a

k ) on tones

k ∈ {pL+1, . . . pL+ l} for all integer values of p, and to (s1,b
k , s2,b

k ) on all other
tones.

For example, to operate at a point E that is 2/3 between A and B (on the
side closer to A), it is required that l = 2 and L = 3. Thus the PSDs are

set to (s1,a
k , s2,a

k ) on tones k ∈ {1, 2, 4, 5, 7, 8, . . . , K − 1} and to (s1,b
k , s2,b

k ) on
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Figure 3.3: Frequency-sharing

tones k ∈ {3, 6, 9, . . . , K}. This is depicted in Fig. 3.3. For this to work the
tone spacing must be small enough such that the channel is approximately flat
over L = 3 neighbouring tones. That is, it is necessary that hn,m

k ' hn,m
k+1 '

hn,m
k+2, ∀ k ∈ {1, 4, . . . , K}.

For large L (small tone spacing), practically any operating point between A
and B can be achieved. Thus for any two points in the rate region, any point
between them is also within the rate region. This is the definition of a convex
set. As such the rate region is approximately convex in DMT systems with
sufficiently small tone spacings. This approximation becomes exact as the
inter-tone spacing approaches zero.

In ADSL and VDSL the tone spacing ∆f is 4.3125 kHz. In both measured and
empirical wireline channels this tone-spacing is found to be small enough such
that the rate regions are convex or nearly-convex.

It should be made clear that even when the rate region is non-convex, the
PSD combinations returned by the optimal spectrum balancing algorithm are
provably optimal (see Theorem 3.4), resulting in an operating point on the
boundary of the rate region. The convexity of the rate region affects only the
ability of the proposed algorithm to explore all optimal operating points. It
does not affect the optimality of the points found by the algorithm.

Note that one should not confuse convexity of the rate-region with convex-
ity of the objective function (3.11). In practice the rate regions are seen to
be nearly-convex, however the optimisation problem is highly non-convex, ex-
hibiting many local maxima. For this reason conventional convex optimisation
techniques cannot be applied and an exhaustive search is required on each tone.
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3.3.6 Dual Decomposition

In the previous section it was shown that the spectrum management problem
(3.2) can be solved through a weighted rate-sum optimization (3.11). It was also
shown that in DSL the rate region is approximately convex, allowing almost all
optimal operating points to be found. This section will show how the weighted
rate-sum can be solved in a computationally tractable way.

The total power constraints (3.3) can be incorporated into the optimization
problem by defining the Lagrangian

L , wR1 + (1 − w)R2 + λ1(P1 −
∑

k

s1
k) + λ2(P2 −

∑

k

s2
k). (3.12)

Here λn is the Lagrangian multiplier for user n and is chosen such that either
the power constraint on user n is tight

∑
k sn

k = Pn or λn = 03. The constrained
optimization (3.11) can now be solved via the unconstrained optimization

max
s1,s2

L(s1
k, s2

k, w, λ1, λ2). (3.13)

Define the Lagrangian on tone k

Lk , wb1
k + (1 − w)b2

k − λ1s
1
k(b1

k, b2
k) − λ2s

2
k(b1

k, b2
k).

Clearly the Lagrangian (3.12) can be decomposed into a sum across tones of
Lk and a term which is independent of s1

k and s2
k

L = fs

∑

k

Lk + λ1P1 + λ2P2.

This is known as the dual decomposition. As a result the optimization can be
split into K per-tone optimizations that are coupled only through w, λ1 and
λ2. This will lead to a linear, rather than exponential complexity in K and a
computationally tractable search.

3.4 Optimal Spectrum Balancing

3.4.1 2-User Algorithm

The optimal spectrum balancing algorithm is listed as Alg. 3.2. If discrete bit-
loading is employed then the maximization in the function optimize s is limited
to the PSD combinations corresponding to valid bitloading combinations, as
calculated by (3.10).

3Note that when λn = 0, the power constraint on user n is implicitly enforced through
the target rate constraints on the other users. In this case the power constraint need not be
explicitly enforced, and the corresponding Lagrangian becomes zero.
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The algorithm operates as follows. It is necessary to search through both
λ1 and λ2 to find values which place sufficient importance on the total power
constraint terms within the Lagrangian (3.12). Variation of w makes it possible
to map out the optimal, achievable points on the convex hull of the rate region.

The algorithm contains three loops, an outer loop that varies w, an intermediate
loop that searches for λ1 and an inner loop that searches for λ2. Bisection is
used in each search.

When searching for λn, it is first necessary to find a value of λn which ensures
that the power constraint of user n is satisfied. This value is stored in λmax

n .
Note that a larger λn places more emphasis on the power constraint of user n
in the Lagrangian. As a result, using a larger λn will result in a lower total
power for user n.

Once λmax
n is found the algorithm proceeds to bisection. Note that after the

algorithm has completed, for each user either
∑

k sn
k = Pn or the corresponding

Lagrangian multiplier is driven to zero, λn = 0. Thus the Lagrangian and the
original objective become equivalent. More rigorously,

Theorem 3.4 For each w Alg. 3.2 returns a PSD combination that is optimal
for the spectrum management problem (3.2). That is, for some Rtarget

1

s1, s2 = arg max
s1,s2

R2, (3.14)

s.t. R1 ≥ Rtarget
1 ,

∑

k

sn
k ≤ Pn, ∀n,

0 ≤ sn
k ≤ sn,max

k , ∀n, k.

Here Rtarget
1 is in fact the rate of user 1 at convergence of the algorithm. Vary-

ing w from 0 to 1 allows all optimal operating points that lie on the convex
hull of the rate region to be found. If the rate region is convex then all optimal
operating points are found.

Proof : See Appendix A.

Note that the cost function on each tone Lk is still non-convex. Hence the
optimization of Lk must be solved through exhaustive search, which has an
exponential complexity in N . The important observation is that since the
optimization on each tone is solved independently the algorithm has a linear,
rather than exponential, complexity in K. This results in a computationally
tractable algorithm.

If the function optimize s finds multiple PSD combinations that yield the same
value for the Lagrangian Lk, then all PSD combinations are stored. This
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Algorithm 3.2 Optimal Spectrum Balancing (2 Users)

Main Function

for w = 0 . . . 1
s1, s2 = optimize λ1(w)

end

Function s1, s2 = optimize λ1(w)
λmax

1 = 1, λmin
1 = 0

while
∑

k s1
k > P1

λmax
1 = 2λmax

1

s1, s2 = optimize λ2(w, λmax
1 )

end
repeat

λ1 = (λmax
1 + λmin

1 )/2
s1, s2 = optimize λ2(w, λ1)
if
∑

k s1
k > P1, then λmin

1 = λ1, else λmax
1 = λ1

until convergence

Function s1, s2 = optimize λ2(w,λ1)
λmax

2 = 1, λmin
2 = 0

while
∑

k s2
k > P2

λmax
2 = 2λmax

2

s1, s2 = optimize s(w, λ1, λ
max
2 )

end
repeat

λ2 = (λmax
2 + λmin

2 )/2
s1, s2 = optimize s(w, λ1, λ2)
if
∑

k s2
k > P2, then λmin

2 = λ2, else λmax
2 = λ2

until convergence

Function s1, s2= optimize s(w, λ1, λ2)
for k = 1 . . .K

s1
k, s2

k = arg maxs1

k
,s2

k
Lk(s1

k, s2
k, w, λ1, λ2)

s.t. 0 ≤ sn
k ≤ sn,max

k , ∀n
(solve by 2-D exhaustive search)

end
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ensures that if multiple points in the rate region are optimal for the same
weight w, see for example points A and C in Fig. 3.1, then each of these points
is discovered.

3.4.2 N-User Algorithm

In the previous section the optimal spectrum balancing algorithm and opti-
mality proof was only given for 2 user channels. The extension to more than
2 users is now described. In the general case of N users there will be a target
rate constraint on the first N − 1 users and the goal is to maximize the rate of
the Nth user. The spectrum management problem is then

max
s1,...,sN

RN s.t. Rn ≥ Rtarget
n , ∀n < N ; (3.15)

∑

k

sn
k ≤ Pn, ∀n;

0 ≤ sn
k ≤ sn,max

k , ∀n, k.

Using a similar approach to Theorem 3.2, it can be shown that (3.15) is equiv-
alent to maximizing a weighted rate-sum

max
s1,...,sN

∑

n

wnRn s.t.
∑

k

sn
k ≤ Pn, ∀n; (3.16)

0 ≤ sn
k ≤ sn,max

k , ∀n, k;

where the weights w1, . . . , wN−1 are chosen such that the target rate constraints
on users 1, . . . , N−1 are met. The weight for the Nth user is arbitrarily defined
as wN , 1−∑N−1

n=1 wn. To enforce the total power constraints on all users, N
Lagrangian multipliers are required λ1, . . . , λN . The constrained optimization
(3.16) is solved through the unconstrained optimization

max
s1

k
,...,sN

k

Lk s.t. 0 ≤ sn
k ≤ sn,max

k , ∀n;

where the Lagrangian on tone k is defined

Lk(s1
k, . . . , sN

k , w1, . . . , wN , λ1, . . . , λN ) ,
∑

n

wnbn
k (s1

k, . . . , sN
k ) − λnsn

k .

In the 2-user case bi-section is only done on λ1 and λ2. In the N user case bi-
section must be done on λ1, . . . , λN , which leads to an exponential complexity in
the number of users N . It is possible to overcome this exponential complexity in
the bisection of λ-space by replacing the bisection with a sub-gradient approach.
The resulting algorithm for the N -user case is listed as Alg. 3.3[111]4. This
algorithm is now described.

4The sub-gradient descent version of optimal spectrum balancing was developed in collab-
oration with Prof. Wei Yu, University of Toronto, Canada. Prof. Yu is given primary credit
for the development of this version of the algorithm.
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The algorithm consists of an inner loop and an outer loop. The inner loop
updates the Lagrangian multipliers λn and wn. The update rule for wn, based
on sub-gradient descent, is

wn =

[
wn + ε

(
Rtarget

n −
∑

k

bn
k

)]+

,

where ε is an appropriately chosen step-size. Constraints are added to ensure
wn remains positive. One can interpret wn as the priority given to user n in
the optimization. If the data-rate of user n is below its target, then wn is
increased to allocate more priority to user n. The process is repeated until
user n achieves its target rate, or wn = 0. Effectively user n chooses the least
possible priority wn required to achieve his target rate, thereby minimizing the
disturbance caused to the other modems in the network.

Similarly the update rule for λn is

λn =

[
λn + ε

(
∑

k

sn
k − Pn

)]+

.

Constraints are added to ensure λn remains positive. One can interpret λn as
the price for power. If user n is below his total power budget, then the price
for power is decreased and user n will be allocated more power. The process
is repeated until user n reaches his power budget, or λn = 0. This algorithm
yields an optimal power allocation, allowing the modems to operate on the
boundary of the N -D rate region. The optimality proof for this algorithm
follows naturally from the 2-user proof given in Appendix A.

Note that the cost function on each tone Lk is still non-convex. Hence the
optimization of Lk must be solved through an N -D exhaustive search, which
has exponential complexity in N . So the overall complexity of the algorithm is
still exponential in N . Due to the non-convexity of the cost function, it seems
difficult to derive an optimal algorithm that does not make use of an exhaustive
search on each tone. Hence, if optimality is required, an exponential complexity
in N seems unavoidable.

In practice the computing power available at the SMC is often limited, and
it may be preferable to find a near-optimal solution with lower complexity.
Algorithms can be formulated to do this, based on the insight gained through
the optimal spectrum balancing algorithm. These algorithms are described in
Section 3.5.

3.4.3 Complexity

This section discusses the complexity of optimal spectrum balancing and shows
that a significant complexity reduction can be achieved over the K-tone exhaus-
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Algorithm 3.3 Optimal Spectrum Balancing (N users)[111]

repeat
for each k: s1

k, . . . , sN
k = arg maxs1

k
,...,sN

k
Lk

(solve by N -D exhaustive search)

for each n: wn = [wn + ε (Rtarget
n − fs

∑
k bn

k )]
+

for each n: λn = [λn + ε (
∑

k sn
k − Pn)]

+

until convergence

tive search described in Section 3.3.4.

We first consider the 2-user case, described by Alg. 3.2. In the outer loops of
the algorithm bisection is done on λ1 and λ2 such that the power constraints
on both users are tight. Assume that an accuracy of ελ is required in each λ.
In the function optimize λ1 the bisection will require log2(1/ελ) iterations to
achieve an accuracy of ελ in λ1. Each iteration will result in the function opti-
mize λ2 being called. Similarly the function optimize λ2 will require log2(1/ελ)
iterations to achieve an accuracy of ελ in λ2. Each iteration will result in the
function optimize s being called.

The function optimize s solves the weighted rate-sum optimization indepen-
dently on each tone through exhaustive search. Hence it requires K(bmax +1)2

evaluations of Lk in the 2 user, discrete bitloading case. A similar expression
can be written for the continuous bitloading case. So the total complexity
of the proposed algorithm is O

(
K(bmax + 1)2 log2(1/ελ)2

)
. Typically setting

ελ to 1 × 10−10 is sufficient to achieve an accuracy of 1% in the total power
constraints (3.3). This leads to a complexity

VOSB = O
(
K(bmax + 1)2

)
.

For comparison solving the problem through a exhaustive search across all
tones requires the evaluation of (bmax +1)2K bitloading combinations. In most
cases this is computationally intractable.

We now consider the N -user case. If bisection is used, the inner loop of the
algorithm must be called 33N times. Since the objective function on each tone
is non-convex, the optimization requires K(bmax + 1)N evaluations of Lk in
the discrete bitloading case. Evaluating Lk requires a weighted rate-sum of N
users and so the total complexity of the algorithm is

O
(
KN(bmax + 1)N33N

)
. (3.17)

For comparison, the exhaustive search across all tones in the N user case re-
quires the evaluation of (bmax + 1)NK bitloading combinations. For each bit-
loading combination the total rate must be calculated for each user across all
tones. Hence the exhaustive search has a complexity

Vexhaustive = O
(
KN(bmax + 1)KN

)
.
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Algorithm 3.4 Iterative Spectrum Balancing
repeat
for n = 1 . . .N

repeat
for each k: fix sm

k , ∀m 6= n, then
sn

k = argmaxsn
k

Lk

(solve by 1-D exhaustive search)

wn = [wn + ε (Rtarget
n − fs

∑
k bn

k )]
+

λn = [λn + ε (
∑

k sn
k − Pn)]

+

until convergence
end

until convergence

Comparing this with (3.17) shows that the optimal spectrum balancing algo-
rithm leads to a complexity reduction of

∆V = O
(
(bmax + 1)N(K−1)33−N

)
.

The first term (bmax + 1)N(K−1) can be interpreted as the benefit of replacing
the NK dimensional non-convex optimisation with K separate N dimensional
optimisations. The second term 33−N is the penalty of searching through λ-
space.

Typically bmax = 14. In ADSL K = 256 and so the overall complexity reduc-
tion with the proposed algorithm is O(10298N ). In VDSL K = 4096 and the
overall complexity reduction is even higher at O(104815N ). To give an example,
optimizing a 2 user ADSL system with Alg. 3.2 takes approximately 30 seconds
on a modern PC. Using an exhaustive search would take 10590 years.

3.5 Iterative Spectrum Balancing

Despite the large reduction in complexity that the optimal spectrum balancing
algorithm achieves, at large N it can still be too complex for practical imple-
mentation. Changing line conditions and the frequent addition of new users to
a binder mean that practical DSM algorithms need to re-optimize the modem
spectra in a matter of minutes. In this case it may be more interesting to find
low complexity algorithms with near-optimal performance.

In recent work a simplified spectrum balancing algorithm was developed based
on the optimal spectrum balancing approach[20]. Like optimum spectrum bal-
ancing this algorithm is based on a weighted rate-sum, which allows the selfish-
optimum of iterative waterfilling to be avoided. However, the weighted rate-
sum optimization is implemented in an iterative fashion leading to a quadratic,
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rather than exponential, complexity in N . Whilst this is relatively early work,
we include a description of it here for completeness.

In optimal spectrum balancing the transmit PSDs are searched jointly (3.16),
which leads to an exponential complexity in N . An alternative approach is to
search the PSDs of each user in an iterative fashion. The PSD of each user is
updated one at a time. When updating the PSD of user n, the PSDs of all
other users are fixed at their present values. The optimization is then

max
sn

∑

n

wnRn s.t.
∑

k

sn
k ≤ Pn, (3.18)

0 ≤ sn
k ≤ sn,max

k , ∀k.

Note that the optimization is only done over the PSD of a single user. The
algorithm iterates through the users, optimizing the PSD of each user in turn.
The complete algorithm, which we name iterative spectrum balancing, is listed
as Alg. 3.4.

The algorithm consists of an outer loop and an inner loop. In the inner loop the
PSD of user n is optimized. In a similar fashion to optimal spectrum balancing,
the update of each user’s PSD is based on a weighted rate-sum, which allows the
selfish-optimum of iterative waterfilling to be avoided. However, unlike optimal
spectrum balancing, the optimization is only done on the PSD of a single
user. So the N -dimensional exhaustive search is replaced by a 1-dimensional
exhaustive search. This leads to a complexity which is quadratic, rather than
exponential, in N .

This algorithm reduces complexity considerably and yields optimal perfor-
mance in the broad range of scenarios that we have studied. Unfortunately
have no proof for the optimality of iterative spectrum balancing. However we
strongly suspect that such a proof exists, and that iterative spectrum balanc-
ing is in fact optimal for spectrum management in DSL channels. Perhaps
of more practical interest is the fact that iterative spectrum balancing yields
significant gains over the current state-of-the-art and is directly applicable to
existing modems. Further of iterative spectrum balancing is an important area
for future work.

3.6 Performance

This section compares the performance of the proposed algorithms with existing
spectrum management techniques. For all simulations the line diameter is 0.5
mm (24-AWG). Direct and crosstalk channel transfer functions are calculated
using the empirical models described in Section 2.1.2. The target symbol error
probability is 10−7 or less. The coding gain and noise margin are set to 3
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Figure 3.4: Downstream ADSL 2 User Scenario

dB and 6 dB respectively. Continuous bitloading is used and ∆s is set to 0.1
dBm/Hz. The maximum bitloading is not constrained. As per the ADSL and
VDSL standards the tone spacing ∆f and DMT symbol rate fs are set to 4.3125
kHz and 4 kHz respectively[9][3][7].

3.6.1 Remote Terminal Distributed ADSL

This section evaluates the performance of optimal spectrum balancing in down-
stream ADSL. A maximum transmit power of 20.4 dBm is applied to each
modem[3]. The usual PSD constraint is not applied in the optimal spectrum
balancing or iterative waterfilling algorithms. A spectral mask is applied to the
flat PBO and reference noise method and is set at -40 dBm/Hz[3]. Background
noise includes crosstalk from 10 ISDN, 4 HDSL, and 10 non-DSM ADSL dis-
turbers which transmit at the spectral mask. In the reference noise method
the reference length is set to 5 km and the reference noise to the background
noise described above.

2-User Scenario

This scenario consists of a 5 km CO distributed line and a 3 km RT distributed
line. The RT is located 4 km from the CO. This is depicted in Fig. 3.4 where
lco−rt = 4 km.

Fig. 3.5 shows the rate regions corresponding to the various spectrum manage-
ment algorithms. For comparison the rate regions with iterative waterfilling,
the reference noise method and flat PBO are shown. No PBO method for RT
distributed ADSL modems has been defined in standardization and this is still
an open issue[6]. A method for reducing the downstream transmit PSD known
as the power cutback method is currently implemented in ADSL modems to
prevent the receiver ADCs from being overloaded[3]. However on the 3 km RT
distributed line this technique does not cause any reduction in the transmit
PSD.

The PSDs corresponding to a 1 Mbps service on the CO distributed line are
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Figure 3.5: Rate Regions in Downstream ADSL

depicted in Fig. 3.6 and Fig. 3.7. The optimal PSD on the RT line decreases
with frequency to reflect the increase in crosstalk coupling. This continues until
440 kHz where the CO line becomes inactive due to its low channel SNR above
this frequency. Once the CO line becomes inactive a sudden increase in the
optimal PSD on the RT line can be observed.

With the flat PBO algorithm, the RT line must employ a large amount of PBO
to protect the CO line. This occurs because, unlike in optimal spectrum bal-
ancing, the flat PBO algorithm cannot vary the degree of PBO with frequency.

The iterative waterfilling algorithm gives similar results. Slightly less PBO is
required since the CO line PSD has been boosted on the active tones as shown
in Fig. 3.6. However the amount of PBO required is still much larger than
with optimal spectrum balancing. The iterative waterfilling algorithm does
not exploit the fact that crosstalk coupling is low at low frequencies. It also
does not exploit the fact that the CO line is inactive above 440 kHz. Both
of these facts could have been used to increase the transmit PSD on the RT
line at low and high frequencies, leading to increased performance without a
large degradation in the performance of the CO line. Due to this the iterative
waterfilling algorithm gives poor performance.

It has been shown that the reference noise method is near-optimal when the
SINR is high[87]. This is the case in low frequencies. For this reason the
reference noise PSD matches the optimal PSD quite closely at frequencies below
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Figure 3.6: PSDs on CO line in Downstream ADSL (CO Line @ 1 Mbps)
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Figure 3.7: PSDs on RT line in Downstream ADSL (CO Line @ 1 Mbps)
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Table 3.1: Achievable Rates in Downstream ADSL

Scheme CO Rate RT Rate
Flat PBO 1.0 Mbps 1.7 Mbps
Ref. Noise 1.0 Mbps 2.3 Mbps
Iterative Waterfilling 1.0 Mbps 3.6 Mbps
Iterative Spectrum Balancing 1.0 Mbps 7.4 Mbps
Optimal Spectrum Balancing 1.0 Mbps 7.4 Mbps

440 kHz. This could be exploited to create a low-complexity, near-optimal
spectrum balancing algorithm.

As shown in Tab. 3.1 using optimal spectrum balancing instead of iterative
waterfilling allows the data-rate on the RT distributed line to be increased
from 3.6 Mbps to 7.4 Mbps whilst still maintaining a 1 Mbps service on the
CO distributed line. So the data-rate is doubled through the use of optimal
spectrum balancing.

Iterative spectrum balancing yields identical spectra and rate regions to opti-
mal spectrum balancing, resulting in optimal performance. After simulating
iterative spectrum balancing in a broad range of scenarios, it appears to be
near-optimal in general. A detailed study of why iterative spectrum balanc-
ing yields near-optimal performance is an important area for future work. We
postulate that this is due to the hierarchal structure of crosstalk, by which
we mean that far-end users cause negligible crosstalk to near-end users. For
example, in this scenario the RT causes significant crosstalk to the CO, but
the CO has negligible impact on the RT. This appears to enable an iterative,
user-by-user line-search to converge to the globally optimal solution.

To investigate the performance of optimal spectrum balancing in a broad range
of scenarios we varied the distance from the CO to the RT lco−rt. Simulations
were run with values of lco−rt from 0 km to 5 km in 100 m increments. The
target data-rate on the RT line was set to 7 Mbps. The resulting rate on the
CO line with the different algorithms is then shown in Fig. 3.8. As can be seen,
optimal spectrum balancing leads to a significant increase in data-rate over a
broad range of scenarios.

4 User Scenario

This scenario consists of one 5 km CO distributed line, and 3 RT distributed
lines: RT1, RT2 and RT3 as depicted in Fig. 3.9. The RTs are located at 2
km, 3 km and 4 km from the CO respectively. The corresponding line lengths
are 4 km, 3.5 km and 3 km.
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Figure 3.9: Downstream ADSL 4 User Scenario
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The target rates on RT1 and RT2 have both been set to 2 Mbps. For a variety
of different target rates on RT3, the CO attempted to maximize its own data-
rate either by transmitting at full power in iterative waterfilling, or by setting
its corresponding weight to unity in iterative spectrum balancing and optimal
spectrum balancing. This produced the rate regions shown in Fig. 3.10.

The rate regions in Fig. 3.10 show the substantial gains that optimal spectrum
balancing achieves over iterative waterfilling. For example, consider the case
when a minimum service of 1 Mbps must be provided to the CO line. Fig. 3.10
shows that with iterative waterfilling the maximum achievable rate on RT3 is
then 3.3 Mbps. Compare this with optimal spectrum balancing where the rate
on RT3 can be increased to 7.3 Mbps whilst still maintaining 1 Mbps on the
CO line. So the achievable rate on RT3 can be doubled through the use of
optimal spectrum balancing. These results are summarized in Tab. 3.2.

The corresponding PSDs are shown in Fig. 3.11 for iterative waterfilling and
Fig. 3.12 for optimal spectrum balancing. The PSDs from iterative spectrum
balancing are not shown since they are nearly identical to those from optimal
spectrum balancing. Note that with iterative waterfilling the PBO on the RTs
is flat with frequency. Contrast this with iterative spectrum balancing where
the PBO varies dramatically with frequency. Crosstalk coupling is minimal at
low frequencies so with optimal spectrum balancing the RTs transmit at full
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Method RT3 (Mbps) CO (Mbps)
Flat PBO 0.3 1.0

Iterative Waterfilling 3.3 1.0
Iterative Spectrum Balancing 7.3 1.0
Optimal Spectrum Balancing 7.3 1.0

Table 3.2: Rate Comparison - 4 User Scenario (RT1-2 @ 2 Mbps)

power on the lower tones. As frequency increases the RTs reduce their power
to protect the CO. The level of PBO increases with the nearness of an RT’s
transmitter to the receiver of the CO line. At 430 kHz the CO line becomes
inactive due to poor channel-SNR. Above this frequency the CO line no longer
needs to be protected and the PSDs of the RTs increase abruptly. RT3 still
does some PBO to protect RT1. At 750 kHz RT1 becomes inactive due to poor
channel-SNR on its line. As a result the PSD on RT3 increases again.

It should be clear that optimal performance requires PBO that varies with
frequency. Optimal spectrum balancing adapts the transmit spectra to match
the crosstalk coupling strength and the type of active users on each particular
tone. This leads to a large performance gain over iterative waterfilling, which
can only implement frequency flat PBO.

Note that, as the iterative spectrum balancing and optimal spectrum balanc-
ing rate region coincide in Fig. 3.10, iterative spectrum balancing gives close
to optimal performance in this scenario. After simulating iterative spectrum
balancing in a broad range of scenarios, it appears to be near-optimal in gen-
eral. A detailed study of why iterative spectrum balancing yields near-optimal
performance is an important area for future work. We postulate that this is
due to the hierarchal structure of crosstalk, by which we mean that far-end
users do not cause substantial crosstalk to near-end users. For example, in
this scenario the CO causes significant interference to no-one, and RT n only
causes significant interference to the CO and RT m, ∀m < n. This appears to
enable the iterative, user-by-user line-search of iterative spectrum balancing to
converge to the globally optimal solution.

3.6.2 Near-far Problem in VDSL

Upstream VDSL transmission is simulated with 4× 600m lines and 4× 1200m
lines as depicted in Fig. 3.13. Each modem has a maximum transmit power
of 11.5 dBm available. The usual PSD constraint is not applied in the optimal
spectrum balancing or iterative waterfilling algorithms. A spectral mask is
applied to the flat PBO, reference noise and reference PSD methods and is set
at -60 dBm/Hz[7]. Alien crosstalk is incorporated into the background noise
using ETSI model A. FDD bandplan 998 is used with the frequency bands
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Figure 3.11: Iterative Waterfilling PSDs
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Figure 3.14: Rate Regions in Upstream VDSL

corresponding to amateur radio frequencies notched off. For more details see
[7]. In the reference noise method the reference length was set to 1200 m and
the reference noise to ETSI model A.

Fig. 3.14 shows the rate regions corresponding to various spectrum manage-
ment algorithms. Included are flat PBO, iterative waterfilling, the reference
noise method and the reference PSD method, which is currently adopted in
VDSL standards[9][7].

The PSDs corresponding to a 5 Mbps service on the 1200 m lines are depicted in
Fig. 3.15 and Fig. 3.16. Under the 998 FDD bandplan there are two separate
upstream bands: 3.75 - 5.2 MHz and 8.5 - 12 MHz. CP modems may not
use frequencies between these bands since they are reserved for downstream
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Figure 3.15: PSD on 1200m lines in Upstream VDSL (1200m line @ 5 Mbps)

transmission by the CO modems.

The optimal PSD of the 600 m lines in the first upstream band is quite flat
with some power back-off (PBO) applied. In the second upstream band PBO
is not required since the 1200 m lines are not active. There the optimal PSD
on the 600 m lines increases with frequency as the crosstalk coupling between
the four different 600 m lines rises.

The 600 m lines see a relatively flat channel up to 10 MHz. So with iterative
waterfilling they transmit with almost the same PSD of -80 dBm/Hz in the first
band and in the second band below 10 MHz. The crosstalk coupling from the
1200 m lines into the 600 m lines is minimal due to the 600 m of attenuation
the signals from the 1200 m lines experience before coupling begins. As such
the PSD of the 1200 m lines does not affect the PSD adopted by the 600 m
lines. As with optimal spectrum balancing, iterative waterfilling requires a
large amount of PBO in the first band to ensure the desired service rate for the
1200 m lines. Unfortunately the transmit PSD has now also been decreased in
the second transmission band. This is unnecessary since the 1200 m lines are
inactive in the second band. The rate of the 600 m lines is decreased without
benefiting the 1200 m lines and this leads to inferior performance.

As shown in Tab. 3.3, using optimal spectrum balancing instead of iterative
waterfilling allows the data-rate on the 600 m lines to be increased from 7.7
Mbps to 15 Mbps whilst still maintaining a 5 Mbps service on the 1200 m
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Figure 3.16: PSD on 600m lines in Upstream VDSL (1200m Line @ 5 Mbps)

lines. Again the data-rate is approximately doubled through the use of optimal
spectrum balancing.

Iterative spectrum balancing yields identical spectra and rate regions to optimal
spectrum balancing, resulting in optimal performance.

Note the optimal rate regions for both the ADSL and VDSL scenarios are
convex as was predicted in Section 3.3.5.

Table 3.3: Achievable Rates in Upstream VDSL

Scheme 1200 m Rate 600 m Rate
Ref. PSD 2.7 Mbps 13.1 Mbps
Flat PBO 3.9 Mbps 0.0 Mbps
Ref. Noise 3.9 Mbps 0.0 Mbps
Iterative Waterfilling 5.0 Mbps 7.7 Mbps
Iterative Spectrum Balancing 5.0 Mbps 15.0 Mbps
Optimal Spectrum Balancing 5.0 Mbps 15.0 Mbps



70 Chapter 3. Optimal Spectrum Balancing

3.6.3 Discrete Bitloading

The same simulations are made with discrete bitloading, with each modem
forced to adopt an integer bitloading value. The maximum bitloading bmax

is set to 14. All other simulation parameters are the same. In the iterative
waterfilling algorithm the Levin-Campello algorithm is used to ensure integer
bitloadings on each tone[15].

In the ADSL scenario using optimal spectrum balancing, instead of iterative
waterfilling, allows the data-rate on the RT distributed line to be increased
from 3.1 Mbps to 7.3 Mbps, whilst still maintaining a 1 Mbps service on the
CO distributed line.

In the VDSL scenario using optimal spectrum balancing, instead of iterative
waterfilling, allows the data-rate on the 600 m lines to be increased from 3.4
Mbps to 13 Mbps, whilst still maintaining a 5 Mbps service on the 1200 m
lines.

Iterative spectrum balancing yields identical spectra and rate regions to optimal
spectrum balancing, resulting in optimal performance.

3.7 Summary

This chapter presented a centralized algorithm for optimal spectrum balancing
in DSL. The algorithm calculates the spectra for the modems within a network
to achieve optimal performance, thereby operating on the rate region boundary.
The algorithm can operate under a combination of total power and spectral
mask constraints, and can use either continuous or discrete bitloading.

Through the use of a dual decomposition, the inner loop of the proposed algo-
rithm solves the spectrum management problem independently on each tone.
The result is a computationally tractable and efficient algorithm. Simulations
show that the proposed algorithm yields significant gains over existing spec-
trum management techniques, typically doubling the achievable data-rate.

Whilst this chapter has focused on the problem of spectrum management in
DSL, the algorithm is also applicable to any communication system where
inter-user interference is a problem. Optimal spectrum balancing could also be
applied to broadband cable networks, high-speed Ethernets or fixed wireless
links.

A patent has been filed on this material[32]. Optimal spectrum balancing is
now part of the draft ANSI standard on Dynamic Spectrum Management[8].
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Overview

Crosstalk is a major problem in modern DSL systems such as ADSL and VDSL.
Crosstalk can be mitigated through the coordination of DSL modems, which
can be done either on a spectral or signal level. Spectral coordination was
discussed in Part I of this thesis. Signal coordination is discussed in this part.

To facilitate signal coordination either the transmitting or receiving modems
must be co-located. So, unlike spectral coordination, signal coordination can-
not be applied in mixed CO/RT scenarios. Furthermore, signal coordination
has a higher run-time complexity than conventional DSL modems, which in-
creases production cost.

Nevertheless signal coordination gives superior performance, allowing DSL to
be delivered at higher speeds and to a larger number of customers. The in-
creased revenue compensates for higher production costs and will make signal
coordination an important technology in the medium term.

In the US, signal coordination is used between co-located CO receivers. Recep-
tion is done in a joint fashion; the signals received on each line are combined
to cancel crosstalk whilst preserving the signal of interest.

Chapter 4 discusses crosstalk canceler design. Existing techniques are based
on decision feedback between the different users within the binder. To prevent
error propagation decoding must be done before decisions are fed back, which
leads to a high computational complexity and latency. To address this problem,
a simple linear canceler is presented based on the well known ZF criterion.
This technique has a low complexity and latency. It is shown that, due to
a special property of upstream DSL channels, this design operates close to
the theoretical channel capacity. A low complexity algorithm is proposed for
spectra optimization when crosstalk cancellation is employed.

In the downstream, signal coordination is used between co-located CO trans-
mitters. Transmission is done in a joint fashion; predistortion is introduced
into the signal of each user prior to transmission. This predistortion is chosen
such that it annihilates with the crosstalk introduced in the channel. As a
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(co−located)
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Figure 3.17: Co-located Receivers

result the customer premises (CP) modems receive a crosstalk free signal.

This technique, known as crosstalk precoding, is discussed in Chapter 5. Exist-
ing precoder designs lead either to poor performance or require the replacement
of CP modems. Millions of CP modems are currently in use, owned and op-
erated by a multitude of customers. Replacing these modems presents a huge
legacy issue. To address this problem a simple linear precoder is presented
based on a channel diagonalizing criterion. The precoder has a low complex-
ity and works with existing CP modems. It is shown that, due to a special
property of downstream DSL channels, this design operates close to the theo-
retical channel capacity. A low complexity algorithm is proposed for spectra
optimization when crosstalk precoding is employed.

As a by-product, the work in Chapters 4 and 5 produced as set of bounds
on the determinants and inverses of diagonally dominant matrices. These are
listed in Appendix B.

Despite the low complexity of the techniques presented in Chapters 4 and 5,
signal coordination still requires a much higher complexity than is available in
existing DSL modems. Crosstalk cancellation and precoding have a complexity
that scales quadratically with the number of lines within a binder. For typical
binders, which contain anywhere from 20 to 100 lines, these techniques are
outside the scope of present day implementation and may remain so for several
years. Chapter 6 addresses this problem through a technique known as partial
cancellation.

It is well known that the majority of crosstalk experienced on a line comes
from the 3 to 4 surrounding pairs in the binder. Furthermore, since crosstalk
coupling varies dramatically with frequency, the worst effects of crosstalk are
limited to a small selection of tones. Partial cancelers exploit these facts to
achieve the majority of the performance of full cancellation at a fraction of
the complexity. Whilst the idea of partial cancellation has been discussed in
literature, no work has specifically focused on partial canceler design.
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Figure 3.18: Co-located Transmitters

Chapter 6 investigates partial canceler and precoder design, which is in essence
a problem of resource allocation. Given a limited amount of available run-time
complexity, a modem must distribute this across lines and tones such that the
data-rate is maximized. Chapter 6 presents the optimal algorithm for partial
canceler design and several simpler, sub-optimal algorithms. These algorithms
are shown to achieve 90% of the data-rate of full cancellation at less than 30%
of the complexity.

The techniques developed in this part assume knowledge of the direct and
crosstalk channels in the network. This requires the use of multi-user channel
identification techniques. When CO modems are co-located this is straight-
forward to implement in practice and requires only that the training sequences
of the modems are mutually orthogonal. For a detailed study of multi-user
channel identification in a DSL context see [112, 11, 57].

This material in Chapter 4 has been published as [34, 22, 28, 23] and submitted
for publication as [18]. This material in Chapter 5 has been published as
[17, 29], submitted for publication as [19] and submitted to standardization as
[33]. The material in Chapter 6 has been published as [27, 25, 24, 26] and has
been patented by Alcatel[30, 31].
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Chapter 4

Receiver Coordination

4.1 Introduction

In conventional DSL modems the transmitted symbol is estimated based on
the received signal on the corresponding line1

x̂n
k = fsu−rx (yn

k ) ,

where fsu−rx(·) denotes the single-user receiver operation. Crosstalk is treated
as background noise; it decreases the receiver-side SNR and limits the achiev-
able bitloading to

bn
k = log2

(
1 +

1

Γ

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σk

)
.

Part I of this thesis investigated ways of intelligently setting the transmit spec-
tra sn

k of the modems in an attempt to minimize the effects of crosstalk. These
techniques were referred to as spectral coordination since they optimize the
spectra of the modems in the network.

In upstream transmission the receiving modems are often co-located in a com-
mon central office (CO). This makes possible a second, higher level of coordina-
tion, whereby the modems coordinate not just their spectra, but their signals
as well. Essentially a DSL modem now estimates the transmitted signal based
on the received signals on every line

x̂n
k = fmu−rx (yk) , (4.1)

1The work in this chapter was done in close collaboration with Dr. George Ginis, Texas
Instruments, San Jose, CA.
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where fmu−rx(·) denotes the multi-user receiver operation and

yk , [y1
k, . . . , yN

k ]T .

Such receiver coordination makes it possible to filter out the crosstalk on each
line. Afterwards each modem sees only the signal of interest and the filtered
background noise. As this chapter will show, since the DSL channel is well-
conditioned, in the spatially white noise case it is possible to achieve a data-rate
very close to the single-user bound

bn
k = log2

(
1 +

1

Γ

‖hn
k‖

2
sn

k

σk

)
,

where the nth column of Hk is defined hn
k , [Hk]col n.

Several crosstalk canceler designs have been proposed. A decision feedback
structure was shown to achieve close to the theoretical channel capacity[59]
and is described in more detail in Section 4.4. Unfortunately this structure
suffers from error propagation. To minimize the effects of error propagation
each user’s data-stream must be decoded before decisions are fed back. This
leads to a high computational complexity and a latency that grows with the
number of users in the binder. Binders can contain hundreds of lines. As a
result, this design is inapplicable in real-time applications such as voice over
IP or video conferencing.

A simpler crosstalk canceler design is the linear zero-forcing (ZF) canceler[92],
which is described in Section 4.5. This design has a low complexity, no latency
and does not suffer from error propagation. Furthermore since it is based on
a ZF criterion it removes all crosstalk. Despite these advantages it is well
known that ZF criteria can lead to severe noise enhancement in ill-conditioned
channels.

Section 4.5 analyzes the performance of the linear ZF canceler in a DSL envi-
ronment. It is shown that, due to the well conditioned structure of the DSL
channel matrix, ZF designs lead to negligible noise enhancement. Section 4.5
derives bounds to show that the linear ZF canceler operates close to the single-
user bound. These bounds allow performance of the linear ZF canceler to be
predicted without the need for explicit knowledge of the crosstalk channels,
which simplifies service provisioning significantly. These bounds are a major
contribution of this chapter.

Alternative cancellation techniques have also been proposed that use turbo
coding principles to facilitate cancellation[41, 113, 49]. Other techniques exploit
the cyclostationarity of crosstalk[74, 10]. The advantage of these methods
is that they do not require signal coordination, and can instead be applied
independently on each modem. Unfortunately these techniques are extremely
complex and give poor performance when more than one crosstalker exists.



4.2. System Model and CWDD 79

Other techniques use joint linear processing at both the transmit and receive
side of the link[71, 70, 90]. This requires co-location of both CO and cus-
tomer premises (CP) modems, which is typically not the case since different
customers are usually situated at different locations. Furthermore, it has been
shown that the theoretical channel capacity is achievable with receiver-side co-
ordination only, so using coordination on both ends of the link does not improve
performance[105].

The rest of this chapter is organized as follows. The system model for a net-
work of DSL modems transmitting to a single CO is given in Section 4.2. A
property of the upstream DSL channel, known as column-wise diagonal domi-
nance (CWDD), is explored. As described in Section 4.3, from an information
theoretical perspective, the upstream DSL channel is a multi-access channel
(MAC). This allows the single-user bound from Section 2.2.3 to be applied to
bound the capacity of the channel. Section 4.4 describes the multi-user decision
feedback canceler (DFC) and the problems it has with error propagation, high
complexity and latency.

To address the problems of the DFC, Section 4.5 describes a much simpler
linear design that has a low complexity, no latency and is free from error prop-
agation. Section 4.5 uses the CWDD property to formulate a lower bound
on the performance of the linear canceler. This bound shows that the linear
canceler operates close to the single-user bound. Section 4.6 describes power
loading algorithms for use with the linear canceler. This can be seen as the
combination of spectral and signal coordination for the upstream DSL channel.
Existing power loading algorithms for the MAC are extremely complex, having
a polynomial complexity in the number of lines and tones. Application of the
linear canceler decouples the power allocation problem between lines, and this
simplifies power allocation significantly. The PSD for each line can then be
found through a low-complexity waterfilling procedure. Section 4.7 compares
the performance of the different cancelers.

4.2 System Model and CWDD

For crosstalk cancellation to be applied, the receiving modems must be co-
located at a common CO. This makes it straightforward to synchronize the
modems, and transmission can be modeled independently on each tone, as
described in Chapter 2,

yk = Hkxk + zk .

Typically the noise is spatially white, and we make this assumption here

E
{
zkz

H
k

}
= σkIN . (4.2)
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Figure 4.1: Column-wise Diagonal Dominance |h11| � |h21|

Since the receiving modems are co-located, the crosstalk signal transmitted
from a disturber into a victim must propagate through the full length of the
disturber’s line. This is depicted in Fig. 4.1, where CP 1 is the disturber and
CO 2 is the victim. The shielding between twisted pairs increases the attenu-
ation. As a result, the crosstalk channel matrix Hk is column-wise diagonally
dominant (CWDD), since on each column of Hk the diagonal element has the
largest magnitude

|hm,m
k | � |hn,m

k | , ∀m 6= n. (4.3)

CWDD implies that the crosstalk channel hn,m
k from a disturber m into a victim

n is always weaker than the direct channel of the disturber hm,m
k . The degree

of CWDD can be characterized with the parameter αk

|hn,m
k | ≤ αk |hm,m

k | , ∀m 6= n. (4.4)

Note that crosstalk cancellation is based on joint reception. As such it requires
the co-location of receiving modems. So in all channels where crosstalk can-
cellation can be applied, the CWDD property holds. CWDD has been verified
through extensive measurement campaigns of real binders. In 99% of lines αk

is bounded
αk ≤ Kxffk

√
dcoupling,

where Kxf = −22.5 dB and fk is the frequency on tone k in MHz[7]. Here
dcoupling is the coupling length between the disturber and the victim in kilome-
ters, as defined in (2.14). The coupling length can be upper bounded by the
longest line length in the binder. Hence

αk ≤ Kxffk

√
lmax, (4.5)

where lmax denotes the length of the longest line in the binder. To find a value
for αk that is independent of the particular binder configuration, lmax can be
set to 1.2 km, which is the maximum deployment length for DSL. On typical
lines αk is less than -11.3 dB. The following sections show that CWDD ensures
a well-conditioned crosstalk channel matrix. This results in the near-optimality
of the linear ZF canceler.
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4.3 Theoretical Capacity

We start with a bound on the theoretical capacity of the upstream DSL channel
with coordinated receivers. This will prove useful in evaluating crosstalk can-
celer performance since it provides an upper bound on the achievable data-rate
with any possible crosstalk cancellation scheme.

Theorem 4.1 With spatially white background noise the capacity of user n
with a fixed transmit spectrum sn

k is upper bounded

Rn ≤ fs

∑

k

bn
k,mac−dsl (4.6)

where

bn
k,mac−dsl , log2

(
1 + σ−1

k sn
kΓ−1 |hn,n

k |2
[
1 + (N − 1)α2

k

])
.

Proof : CO modems are co-located and do reception in a joint fashion, so
from an information theoretical perspective this is a multi-access channel. The
single-user bound developed in Section 2.2.3 applies and limits the achievable
bitloading of user n on tone k

bn
k ≤ log2

(
1 + σ−1

k sn
kΓ−1 ‖hn

k‖2
2

)
.

Here the SNR-gap to capacity Γ accounts for the sub-optimality of practical
coding schemes. The CWDD property (4.4) leads to the bound

‖hn
k‖

2
2 = |hn,n

k |2 +
∑

m6=n

|hm,n
k |2 ,

≤ |hn,n
k |2

[
1 + α2

k(N − 1)
]
,

which leads to (4.6).

Multi-user techniques are often used in wireless systems and lead to large in-
creases in the signal power at the receiver. The observation is that if the path
from transmit antenna n to receive antenna n is weak, then the path from
transmit antenna n to receive antenna m might be strong. The result is a sta-
tistical averaging across spatial dimensions, an effect known as spatial diversity,
which leads to large improvements in performance[54].

In DSL channels there is, unfortunately, no equivalent to spatial diversity. This
can be seen in equation (4.6). Here the CWDD of Hk implies that very little
increase can be made in the signal power through the use of multiple receivers.
This is the case since the channel from transmitter n to receiver m is much
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weaker than the direct channel from transmitter n to receiver n. Note that the
benefit, although small, increases with the crosstalk channel strength αk and
the number of crosstalkers N .

Although spatial diversity is negligible, the use of co-ordinated reception is by
no means fruitless. Instead of benefiting through spatial diversity, the primary
benefit in DSL channels is crosstalk cancellation. That is, co-ordinated recep-
tion does not increase signal power in DSL, but instead decreases interference
power.

4.4 Decision Feedback Canceler

Decision feedback equalizers are traditionally used for cancelling inter-symbol
interference (ISI) in frequency selective channels. In a multi-user context the
same principle can be applied to remove inter-user interference, otherwise
known as crosstalk. In this case the decision feedback operates across users
rather than time[59, 61, 60].

The structure of the decision feedback canceler (DFC) is now described. Con-
sider the QR decomposition of the crosstalk channel matrix

Hk
qr
= QkRk, (4.7)

where Qk is a unitary matrix and Rk is upper triangular. The DFC applies
the linear feed-forward filter QH

k to the received vector to yield

ỹk = QH
k yk,

= Rkxk + z̃k, (4.8)

where the filtered noise z̃k , QH
k zk[59]. If the noise is spatially white (4.2)

then filtering with the unitary matrix QH
k does not alter the noise statistics

E
{
z̃kz̃

H
k

}
= E

{
Qkzkz

H
k QH

k

}
,

= σkIN

= E
{
zkz

H
k

}
.

If the noise is spatially coloured then a noise pre-whitening must be applied
prior to the DFC, which leads to a more complex receiver structure[105]. How-
ever, in DSL the assumption of spatially white noise is often a valid one.

From (4.8) it is clear that the transmission channel has been transformed into
an upper triangular channel Rk. This channel is causal in the sense that there
is an order in the crosstalk of the users. User N experiences crosstalk from no-
one; user N −1 experiences crosstalk only from user N ; user N −2 experiences
crosstalk only from users N and N − 1; and so on.
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This causal structure admits the use of decision feedback to remove crosstalk.
User N experiences no crosstalk. Hence the signal of user N can be detected,
and the crosstalk it causes to the other components of yk can be removed. At
this point user N − 1 can be detected free from crosstalk, and the crosstalk it
causes to the remaining users can be removed. This procedure iterates until
all users have been detected. The estimate for user n is thus formed

x̂n
k = dec

[
1

rn,n
k

(
yn

k −
N∑

m=n+1

rn,m
k x̂m

k

)]
,

where dec[.] denotes the decision operation and rn,m
k , [Rk]n,m[59]. It is

typically assumed that no decisions errors are made

x̂m
k = xm

k , ∀m > n, (4.9)

which leads to the following estimate for the symbol of user n

x̂n
k = dec

[
xn

k +
z̃n

k

rn,n
k

]
.

The data-rate of user n on tone k is then

bn
k,dfc = log2(1 + σ−1

k Γ−1sn
k |rn,n

k |2). (4.10)

The CWDD property can be used to show that |rn,n
k | ' |hn,n

k |[59]. As a result,
for small αk, the DFC operates very close to the single-user bound

bn
k,dfc ' bn

k,mac−dsl,

So the DFC gives near-optimal performance. It should be noted, however, that
this performance analysis is based on the assumption of error-free decisions
(4.9). For this to be valid a perfect channel code must be used, which has
infinite decoding complexity and delay[48].

In practice a sub-optimal code will be used, which can lead to decision errors,
error propagation and poor performance. Furthermore, decoding of each user’s
codeword must be done before decisions are fed back. This increases complexity
substantially and leads to a latency that grows with the number of lines in
the binder.2 Typical binders contain hundreds of lines, where the increase in
latency due to the DFC can be substantial. As a result the DFC cannot support
real-time applications such as voice over IP and video conferencing.

2In DSL systems the codewords are interleaved across the entire DMT block to add
robustness against deep frequency nulls, which result from line properties such as bridged
taps. Furthermore, the codeword may be interleaved across several DMT blocks to add
robustness against impulse noise. This means that the codewords are already quite long, and
the latency is typically at the limit required for most applications.
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4.5 Near-optimal Linear Canceler

This section describes a simple linear canceler. Unlike the DFC, this struc-
ture has a low complexity, no latency and supports real-time applications. The
structure is based on the zero-forcing (ZF) criterion, which leads to the follow-
ing estimate of the transmitted vector

x̂k = H−1
k yk, (4.11)

= xk + H−1
k zk .

Each user experiences a crosstalk free channel, affected only by the filtered
background noise.

It is well known that ZF designs lead to severe noise-enhancement when the
channel matrix Hk is ill-conditioned. Fortunately CWDD ensures that the
channel matrix is well-conditioned; so the linear ZF canceler leads to negligible
noise enhancement and each user achieves a data-rate close to the single-user
bound. To see this consider the singular value decomposition (SVD) of Hk

Hk
svd
= UkΛkV

H
k .

The CWDD of Hk ensures that its columns are approximately orthogonal.
That is (4.3) implies that

hm
k

H
hn

k '
{
|hn,n

k |2 , n = m;

0, n 6= m.

As a result

VkΛH
k ΛkV

H
k = HH

k Hk

' diag

{∣∣∣h1,1
k

∣∣∣
2

, . . . ,
∣∣∣hN,N

k

∣∣∣
2
}

,

This implies that the right singular vectors can be closely approximated as
Vk ' IN . The linear ZF filter can then be approximated as

H−1
k = VkΛ−1

k UH
k ,

' Λ−1
k UH

k .

Since Uk is unitary it causes no noise enhancement. Furthermore, Λ−1
k is di-

agonal so it scales the noise and signal powers equally. So, due to the CWDD
of Hk, filtering the received signal with the matrix H−1

k causes negligible noise
enhancement. This allows the linear ZF canceler to achieve near-optimal per-
formance, operating close to the single-user bound in DSL channels. This
observation is made rigorous through the following theorem.
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Theorem 4.2 If A
(m)
min

≥ αkmB
(m)
max, m = 1 . . .N − 1; then the data-rate

achieved by the linear ZF canceler can be lower bounded

Rn ≥ fs

∑

k

bn
k,zf−bound,

where

bn
k,zf−bound , log2

(
1 + Γ−1σ−1

k sn
k |hn,n

k |2 f−1(N, αk)
)

, (4.12)

f(N, αk) ,

(
A

(N−1)
max

A
(N)
min

)2

+ (N − 1)

(
B

(N−1)
max

A
(N)
min

)2

, (4.13)

[
A

(m)
max

B
(m)
max

]
,

(
m∏

i=1

[
1 (i − 1)αk

αk (i − 1)αk

])[
1
0

]
, (4.14)

and

A
(m)
min , 1 −

m∑

i=1

αk(i − 1)B(i−1)
max . (4.15)

Proof : Eq. (4.11) implies that, after application of the linear ZF canceler,
the soft estimate of the transmitted symbol is

x̂n
k = xn

k +
[
H−1

k

]
row n

zk .

Hence the post-cancellation signal power is sn
k , the post cancellation interfer-

ence power is zero and the post cancellation noise power is

σ̃k,n , E
{∣∣[H−1

k

]
row n

zk

∣∣2
}

,

=
∥∥[H−1

k

]
row n

∥∥2
σk, (4.16)

where (4.2) is applied in the second line. Hence the data-rate achieved by the
linear ZF canceler is

bn
k,zf(s

n
k ) = log2(1 + Γ−1σ̃−1

k,nsn
k ). (4.17)

Define the matrix Gk , [gn,m
k ], where gn,m

k , hn,m
k /hm,m

k . Now

Hk = Gkdiag{h1,1
k , . . . , hN,N

k },

hence
H−1

k = diag{h1,1
k , . . . , hN,N

k }−1G−1
k , (4.18)

and [
H−1

k

]
n,m

=
1

hn,n
k

[
G−1

k

]
n,m

. (4.19)
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Since the receivers are co-located at the CO, the US channel matrix is CWDD
(4.4). This implies that Gk ∈ A(N), where A(N) denotes the set of N × N
diagonally dominant matrices, as defined in Appendix B. So Theorem B.2 can
be applied to bound the elements of G−1

k . This implies

∣∣∣
[
H−1

k

]
n,m

∣∣∣ ≤
{
|hn,n

k |−1
A

(N−1)
max /A

(N)
min, n = m;

|hn,n
k |−1

B
(N−1)
max /A

(N)
min, n 6= m;

where A
(N)
max and B

(N)
max are defined in (4.14) and A

(N)
min is defined in (B.4). Hence

∥∥∥
[
H−1

k

]
n,m

∥∥∥
2

≤ |hn,n
k |−2

f(N, αk),

where f(N, αk) is defined as in (4.13). Together with (4.16) this yields

σ̃k,n ≤ σk |hn,n
k |−2

f(N, αk).

Combining this with (4.17) leads to (4.12), which concludes the proof.

The function f(N, αk) can be interpreted as an upper bound on the noise
enhancement caused by the linear ZF canceler. In CWDD channels f(N, αk) '
1. As a result each modem operates at a rate

bn
k,zf ' log2

(
1 + Γ−1σ−1

k sn
k |hn,n

k |2
)

.

So the linear ZF canceler completely removes crosstalk with negligible noise
enhancement.

Note that the bound can be used to guarantee a data-rate without explicit
knowledge of the crosstalk channels. This is because the bound only depends
on the binder size, direct channel gain, and background noise power. Good
models for these characteristics exist based on extensive measurement cam-
paigns. Crosstalk channels on the other hand are poorly understood and actual
channels can deviate significantly from the few empirical models that exist, see
for example Fig. 2.5. This can make provisioning of services difficult. Us-
ing the bound (4.12) allows us to overcome this problem. The bound tells us
that the crosstalk channel gain is not important as long as CWDD is observed.
CWDD is a well understood and modeled phenomenon. As a result (4.12)
allows provisioning to be done in a reliable and accurate fashion.

A note of explanation may be necessary at this point. It may seem that CWDD
allows us to easily predict, or at least bound, the crosstalk power that a receiver
experiences. This is not true. The crosstalk power that a receiver experiences
depends on the magnitude of elements along a row, not column, of Hk. This in
turn depends on the configuration of the other lines within the binder, which
varies dramatically from one scenario to another. For example, in the scenario
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in Fig. 4.2, the crosstalk from the 150m line into the 1200m line is stronger
than the direct signal on the 1200m line itself. So the crosstalk from the other
lines into the 1200m line cannot be bounded without knowledge of the entire
binder configuration. So, without the bound, knowledge of the entire binder is
necessary to predict the performance of a single line. This makes provisioning
of services extremely difficult. CWDD, on the other hand, applies to all lines
when receivers are co-located. No knowledge of the actual binder configuration
is necessary. Using (4.12) the performance of a line can be estimated using
only locally available information about the line itself, such as its direct channel
attenuation and background noise for which reliable models and statistical data
exist.

The value for αk from (4.5) is based on worst 1% case models. Hence for 99% of
lines αk will be smaller. So in 99% of lines a data-rate above the bound (4.12)
is achieved. So the bound is a useful tool not just for theoretical analysis, but
for provisioning of services as well.

Simulations in Section 4.7 use the bound together with (4.4) to show that the
linear ZF canceler operates close to the single-user bound.

4.6 Spectra Optimization

Part I of this thesis discussed the coordination of DSL modems on a spectral
level. Each modem generates its signal independently, however the transmit
spectra are designed in a joint fashion to mitigate crosstalk.

When signal coordination is used crosstalk can be filtered at the receiver side.
It is, however, still interesting to optimize the transmit spectra of each modem
to achieve maximum performance. This can be viewed as the combination of
signal and spectra coordination. Each transmitter is subject to a total power
constraint ∑

k

sn
k ≤ Pn, ∀n. (4.20)

As in Part I, the goal is to maximize the rate of user N , subject to target rate
constraints on the other users in the network. Following the same development
in Section 3.3.5, this can be reformulated as a weighted rate-sum optimization

max
s1,...,sN

∑

n

wnRn s.t.
∑

k

sn
k ≤ Pn, ∀n; (4.21)

sn
k ≥ 0, ∀n, k.

In contrast to Part I, Rn now represents the rate of modem n with crosstalk
cancellation. The data-rate Rn is a function of the transmit PSDs s1, . . . , sN ,
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and also depends on the type of crosstalk canceler used. If an optimal, decision-
feedback based canceler is used, the objective function becomes convex[100].
Solving (4.21) then requires the solution of a KN -dimensional convex optimiza-
tion. Although the cost function is convex, no closed form solution is known
and numerical techniques must be used instead[100]. Conventional numerical
optimization techniques, such as interior point methods, have a polynomial
complexity in the dimensionality of the search space. In ADSL K = 256,
whilst in VDSL K = 4096. The resulting search thus has an extremely high di-
mensionality, for which conventional optimization techniques are prohibitively
complex.

A low complexity, iterative algorithm has been proposed for the special case
where an unweighted rate-sum is maximized, that is wn = 1 for all n[108].
Unfortunately, since this algorithm cannot optimize a weighted rate-sum, it
cannot ensure that the target rates are achieved. These target rates are essential
to ensure that each customer achieves their desired quality-of-service.

In this section a spectra coordination algorithm is developed for use with the
ZF canceler. Since the ZF canceler removes all crosstalk, the spectrum coor-
dination problem decouples into an independent power loading for each user.
This reduces complexity considerably. Furthermore, Theorem 4.2 ensures that
this approach operates close to the single-user bound.

4.6.1 Theoretical Capacity

We start by extending the single-user bound from Section 4.3 to DSL modems
that may vary their transmit spectra under a total power constraint. The
resulting upper bound is useful for evaluating crosstalk canceler performance
with optimized spectra.

Theorem 4.3 When the transmit PSD sn
k is allowed to vary under a total

power constraint (4.20), the capacity for user n can be upper bounded

Rn ≤ fs

∑

k

bn
k,mac−wf ,

where the upper bound is defined

bn
k,mac−wf , log2

(
1 + σ−1

k Γ−1sn
k,mac−wf |hn,n

k |2
[
1 + α2

k(N − 1)
])

, (4.22)

the single-user waterfilling PSD is defined

sn
k,mac−wf ,

[
1

λn
− Γσk

|hn,n
k |2 [1 + α2

k(N − 1)]

]+

, (4.23)
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and λn is chosen such that power constraint on line n is tight

∑

k

sn
k = Pn. (4.24)

This theorem is an intuitively simple extension of the single-user bound from
Theorem 4.1. The proof, however, is not so straightforward and is now detailed.
The following Lemma will prove useful in the proof.

Lemma 4.4 If g(x) ≥ f(x), ∀x, then

max
vx≤p

g(x) ≥ max
vx≤p

f(x), (4.25)

where x is the vector over which the optimization takes place, and the vector v

and scalar p impose a linear constraint on x.

Proof : Define

xf , arg max
vx≤p

f(x).

Since g(x) ≥ f(x), ∀x,

g(xf ) ≥ f(xf ). (4.26)

Now define

xg , arg max
vx≤p

g(x).

The optimality of xg in g(x), over the subspace defined by the constraints
vx ≤ p, implies that

g(xg) ≥ g(xf ),

≥ f(xf ),

where (4.26) is applied in the second line. This implies (4.25).

Corollary 4.5 Limit the total power of the transmit PSD such that∑
k sn

k ≤ Pn. Under this constraint

max
sn

∑

k

log2

(
1 + σ−1

k sn
kΓ−1 ‖hn

k‖2
)

≤ max
sn

∑

k

log2

(
1 + σ−1

k sn
kΓ−1 |hn,n

k |2
[
1 + α2

k(N − 1)
])

, (4.27)

where sn , [sn
1 , . . . , sn

K ] .
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Proof : Let x = sn, p = Pn, v = 11×K ,

f(sn) =
∑

k

log2

(
1 + σ−1

k Γ−1sn
k ‖hn

k‖2
)

,

and
g(sn) =

∑

k

log2

(
1 + σ−1

k Γ−1sn
k |hn,n

k |2
[
1 + α2

k(N − 1)
])

.

CWDD (4.3) implies that

|hn,n
k |2

[
1 + (N − 1)α2

k

]
≥ ‖hn

k‖
2
,

hence g(sn) ≥ f(sn), ∀sn. Lemma 4.4 now implies (4.27), which completes the
proof.

We now proceed with the proof to Theorem 4.3.

Proof : The single-user bound developed in Section 2.2.3 applies, limiting the
achievable rate of user n on tone k

bn
k ≤ log2

(
1 + σ−1

k Γ−1sn
k ‖hn

k‖2
2

)
.

Hence
Rn ≤ maxP

k sn
k
≤Pn

fs

∑

k

log2

(
1 + σ−1

k Γ−1sn
k ‖hn

k‖
2
2

)
.

Corollary 4.5 now implies

Rn ≤ maxP
k

sn
k
≤Pn

fs

∑

k

log2

(
1 + σ−1

k Γ−1sn
k |hn,n

k |2
[
1 + α2

k(N − 1)
])

.

In this optimization the objective function is concave, and the total power con-
straint forms a convex set. Hence the Karush-Kuhn-Tucker (KKT) conditions
are sufficient for optimality. Examining the KKT conditions leads to (4.22),
(4.23) and (4.24), which completes the proof.

4.6.2 Near-Optimal Linear Canceler

Transmit spectra optimization with the ZF canceler is now considered. The
optimization problem is now

szf
1 , . . . , szf

N = arg max
s1,...,sN

∑

n

∑

k

wnbn
k,zf ;

s.t.
∑

k

sn
k ≤ Pn, ∀n;
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sn
k ≥ 0, ∀n, k;

where the optimal solution szf
n , [sn

1,zf , . . . , s
n
K,zf ]. Here bn

k,zf denotes the rate
achieved with the linear ZF canceler, which was defined in (4.17) as

bn
k,zf , log2

(
1 + sn

k σ̃−1
k,nΓ−1

)
.

Observe that, when using the ZF canceler, the bitrate of each user depends
only on its own transmit PSD. It is independent of the PSDs of the other
users since all interference will be removed. The optimization problem is now
decoupled between users, allowing the optimal power allocation to be found
independently for each user. This also implies that a single PSD is optimal
regardless of the choice of weights wn.

Since the objective function is concave and the constraints form a convex set,
the KKT conditions are sufficient for optimality. Examining these leads to the
classic waterfilling equation

sn
k,zf =

[
1

λn
− Γσ̃k,n

]+
. (4.28)

The waterfilling level λn must be chosen such that the total power constraint
for user n is tight, that is

∑
k sn

k,zf = Pn.

Conventional waterfilling algorithms can be applied to find the correct water-
filling level with O(K log K) complexity. So the overall complexity of power
allocation is O(NK log K) with the linear ZF canceler3. This is a signifi-
cant reduction when compared to existing power allocation algorithms for the
multi-access channel, which have O(N 4K log K) complexity in the unweighted
rate-sum case, and polynomial complexity in KN in the weighted rate-sum
case[108].

Theorem 4.2 shows that, as a result of CWDD, the ZF canceler operates close to
the single-user bound. So using the ZF canceler in combination with the power
allocation (4.28) gives near-optimal performance. This is confirmed through
simulation in the following section.

4.7 Performance

This section evaluates the performance of the ZF canceler in a binder of 8
VDSL lines. The line lengths range from 150m to 1200m in 150m increments,

3Note that this is a significant reduction in complexity when compared to the power
allocation problem in Chapter 3. The basic reason is that power allocation in a MAC typically
involves a convex optimization, where-as power allocation in an IC involves a non-convex
optimization.
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Figure 4.2: Upstream VDSL scenario

as shown in Fig. 4.2. For all simulations the line diameter is 0.5 mm (24-
AWG). Direct and crosstalk channels are generated using the empirical models
described in Section 2.1.2. The target symbol error probability is 10−7 or less.
The coding gain is set to 3 dB and the noise margin is set to 6 dB. As per the
VDSL standards the tone spacing ∆f is set to 4.3125 kHz and DMT symbol
rate fs to 4 kHz[9][7]. The modems use 4096 tones, and the 998 FDD bandplan.
Background noise is generated using ETSI noise model A[7]. Performance is
compared with the DFC and the single-user bound.

4.7.1 Fixed Transmit Spectra

Current VDSL standards require that modems transmit under a spectral mask
of -60 dBm/Hz[9][7]. This section evaluates the performance of the linear ZF
canceler when all modems are operating at this mask.

Fig. 4.4 shows the data-rate achieved by each of the lines with the different
crosstalk cancelers. The linear ZF canceler achieves substantial gains, typically
30 Mbps or more, over conventional systems with no cancellation. As can be
seen the linear ZF canceler achieves near-optimal performance, operating close
to the single-user bound. This is a direct result of the CWDD of Hk, which
ensures that the ZF canceler causes negligible noise enhancement. The noise
enhancement caused by the ZF canceler on the 600m line is plotted for each
tone in Fig. 4.3. As can be seen the noise enhancement is less than 0.16 dB,
which has negligible effect on performance.

Fig. 4.5 shows the data-rate achieved by the linear ZF canceler as a percentage
of the single-user bound. Performance does not drop below 99% of the single-
user bound. The lower bound on the performance of the linear ZF canceler
(4.12) is also included for comparison. As can be seen the bound is quite tight
and guarantees that the linear ZF canceler will achieve at least 92% of the
single-user bound.
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Figure 4.3: Noise enhancement of ZF Canceler on 600 m. line
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Figure 4.5: Proportion of Single-user Bound Achieved by ZF Canceler

4.7.2 Optimized Transmit Spectra

Whilst current VDSL standards require the use of spectral masks, there is grow-
ing interest in the use of adaptive transmit spectra[8]. This section investigates
the performance of the linear ZF canceler with optimized spectra (4.28).

Fig. 4.6 shows the data-rates achieved on each line. The use of optimized
spectra yields a gain of 5-8 Mbps. The benefit is more substantial on the
longer lines, where a 5 Mbps gain can double the data-rate.

Fig. 4.6 shows that spectra coordination gives maximum benefit on long lines.
This is to be expected since on long lines the direct channel gain decreases
more rapidly with frequency. Note that the benefit of adaptive spectra, when
crosstalk has already been cancelled, comes primarily from the modem load-
ing power in the best parts of the channel, which are typically in the lower
frequencies.

The single-user bound (4.22) is included for comparison. As can be seen the
linear ZF canceler operates close to the single-user bound. Fig. 4.7 shows the
data-rate achieved by the linear ZF canceler as a percentage of the single-user
bound. Performance does not drop below 99% of the single-user bound. The
lower bound on the data-rate of the ZF canceler is also included for comparison.
The bound (4.12) guarantees that the ZF canceler and waterfilled PSD achieve
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Figure 4.6: Upstream Data-rate with Coordinated Transmit Spectra

92% of the single-user bound.

4.8 Summary

This chapter investigated the design of crosstalk cancelers for upstream DSL.
Existing designs, which are based on decision feedback, suffer from error prop-
agation, high complexity and long latency. A linear ZF canceler is proposed,
which has a low complexity and no latency.

An oft-cited problem with the ZF design is that it leads to severe noise enhance-
ment in ill-conditioned channels. Fortunately DSL channels with co-located re-
ceivers are column-wise diagonal dominant. This ensures that the DSL channel
is well conditioned, and that the noise enhancement caused by the ZF design
is negligible.

An upper bound on the capacity of the multi-user DSL channel was derived.
This single-user bound shows that spatial diversity in the DSL environment is
negligible. Therefore the best outcome that a crosstalk canceler can achieve is
the complete suppression of crosstalk without noise enhancement.

A lower bound on the performance of the linear ZF canceler was derived. This
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Figure 4.7: Proportion of Single-user Bound Achieved by ZF Canceler

bound depends only on the binder size, direct channel gain and background
noise for which reliable models and statistical data exist. As a result the per-
formance of the linear ZF canceler can be accurately predicted, which simplifies
service provisioning considerably. This bound shows that the linear ZF can-
celer operates close to the single-user bound. So the linear ZF canceler is a low
complexity, low latency design with guaranteed near-optimal performance.

The combination of spectral optimization and crosstalk cancellation was con-
sidered. The bounds were extended to DSL systems with optimized spectra.
Spectra optimization in a multi-access channel in general involves a highly com-
plex optimization. Since the linear ZF canceler decouples transmission on each
line, the spectrum on each modem can be optimized independently, leading to
a significant reduction in complexity.



Chapter 5

Transmitter Coordination

5.1 Introduction

The previous chapter investigated receiver coordination as a means of improv-
ing DSL performance. In upstream communication, the receiving modems are
co-located at the central office (CO). Reception is done a joint fashion; the
signals received on each line are combined to cancel crosstalk whilst preserving
the signal of interest. The results were significant, with the data-rate on each
line typically increasing by 30 Mbps or more1.

In downstream (DS) communication the receiving modems reside within dif-
ferent customer premises (CP). The receiving modems are not co-located, so
joint reception and crosstalk cancellation is impossible. Fortunately, in DS
communication the transmitting modems are co-located at the CO. So joint
transmission is possible. Predistortion is introduced into each signal before
transmission. The predistortion is chosen such that it annihilates with the
crosstalk introduced in the binder, a technique known as crosstalk precoding.

Define x̃n
k as the symbol intended for receiver n on tone k, and xn

k as the signal
sent by transmitter n on tone k. In conventional DSL systems each modem
transmits the symbol intended for the corresponding receiver

xn
k = x̃n

k .

Recall that k denotes the tone index and lies in the range 1 . . .K. The signal

1The work in this chapter was done in close collaboration with Dr. George Ginis, Texas
Instruments, San Jose, CA.
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received by modem n on tone k is then

yn
k = hn,n

k x̃n
k +

∑

m6=n

hn,m
k x̃m

k + zn
k .

The first term is the signal of interest, the middle term the interference, and
the third term the background noise. Since the receivers are not co-located
they must treat crosstalk as background noise. This decreases the SNR and
limits the data-rate to

bn
k = log2

(
1 +

1

Γ

|hn,n
k |2 sn

k∑
m6=n |hn,m

k |2 sm
k + σn

k

)
.

In downstream communication the transmitting modems are often co-located
at a common CO. Transmission can then be coordinated to mitigate crosstalk.
Essentially, each CO modem transmits a mixture of the symbols intended for
the different CP modems

xn
k = x̃n

k + f
n

k,mu−tx

(
x̃1

k, . . . , x̃N
k

)
, (5.1)

where f
n

k,mu−tx(·) denotes the multi-user precoding operation for transmitter n
and N denotes the number of lines in the binder. The signal transmitted con-
tains the symbol of interest x̃n

k plus a predistortion term f
n

k,mu−tx

(
x̃1

k , . . . , x̃N
k

)
.

The signal received by modem n on tone k is then

yn
k = hn,n

k x̃n
k +

∑

m6=n

hn,m
k x̃m

k +
∑

m

hn,m
k f

m

k,mu−tx + zn
k .

The predistortion is chosen such that it annihilates with the crosstalk intro-
duced in the binder

∑

m

hn,m
k f

m

k,mu−tx = −
∑

m6=n

hn,m
k x̃m

k , ∀n.

Hence

yn
k = hn,n

k xn
k +

∑

m6=n

hn,m
k xm

k + zn
k ,

= hn,n
k x̃n

k +
∑

m6=n

hn,m
k x̃m

k +
∑

m

hn,m
k f

m

k,mu−tx + zn
k ,

= hn,n
k x̃n

k + zn
k ,

and each modem receives only the signal of interest and background noise. It
will be shown that, since the DSL channel is well conditioned, the achievable
data-rate is very close to the single-user bound

bn
k,bc , log2


1 + (σn

k )
−1

Γ−1

(
∑

m

|hn,m
k |

√
sm

k

)2

 ,
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where the nth row of Hk is defined h
n

k , [Hk]row n.

Several crosstalk precoder designs have been proposed. The simplest is a lin-
ear structure based on the ZF criterion[92] and is described in more detail in
Section 5.4. Unfortunately with this design all modems experience the channel
of the weakest line in the binder. When the channels of the different lines vary
significantly, due to varying line lengths or bridged taps, this design leads to
poor performance.

A decision feedback structure, based on the Tomlinson-Harashima precoder
(THP), was shown to achieve close to the single-user bound[59] and is described
in more detail in Section 5.5. Unfortunately this structure requires a change of
CP modems. Millions of CP modems are currently in use, owned and operated
by a multitude of customers. Replacing these modems presents a huge legacy
issue. Furthermore, CO modems and CP modems are typically manufactured
by different hardware vendors, making joint designs difficult.

To address this problem, this chapter presents a novel linear precoder based
on a channel diagonalizing criterion. This technique has a low complexity and
does not require the replacement of CP modems. Section 5.6 analyzes the
performance of the diagonalizing precoder in a DSL environment. It is shown
that, due to the well conditioned structure of the DSL channel matrix, the
diagonalizing design leads to negligible transmit power enhancement. Section
5.6 derives bounds which show that the diagonalizing precoder operates close
to the single-user bound. These bounds allow performance of the DP to be
predicted without the need for explicit knowledge of the crosstalk channels,
which simplifies service provisioning significantly. The diagonalizing precoder
and the associated bound are the major contributions of this chapter.

The rest of this chapter is organized as follows. The system model for a network
of DSL modems transmitting from a single CO to a multitude of CPs is given
in Section 5.2. A property of the downstream DSL channel, known as row -
wise diagonal dominance (RWDD), is explored. As described in Section 5.3,
from an information theoretical perspective, the downstream DSL channel is a
broadcast channel (BC). This allows the single-user bound from Section 2.2.4
to be applied to bound the capacity of the channel. Section 5.4 describes
the zero-forcing precoder (ZFP) and the problems it has with transmit power
enhancement. Section 5.5 describes the multi-user THP, and shows that it
requires replacement of CP modems.

To address these problems, Section 5.6 describes a much simpler linear design,
the diagonalizing precoder (DP), which has a low complexity and works with
existing CP modems. Section 5.6 uses the RWDD property to formulate a
lower bound on the performance of the DP. This bound shows that the DP
operates close to the single-user bound.
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Section 5.7 describes power loading algorithms for use with the DP. This can be
seen as the combination of spectral and signal coordination for the upstream
DSL channel. Existing power loading algorithms for the BC are extremely
complex, having a polynomial complexity in the number of lines and tones.
Application of the DP decouples the power allocation problem between lines,
and this simplifies power allocation significantly. The PSD for each line can
then be found through a low-complexity waterfilling procedure. The perfor-
mance of the different precoders is evaluated in Section 5.8.

5.2 System Model and RWDD

For crosstalk precoding to be applied, the transmitting modems must be co-
located at a common CO. This makes it straightforward to synchronize the
modems, and transmission can be modeled independently on each tone as de-
scribed in Chapter 2

yk = Hkxk + zk .

The transmit PSD on each line must obey a spectral mask constraint. That is

sn
k ≤ smask

k , ∀k, n. (5.2)

Since the transmitting modems are co-located, the crosstalk signal transmitted
from a disturber into a victim must propagate through the full length of the
victim’s line. This is depicted in Fig. 5.1, where CO2 is the disturber and CP1
is the victim. The shielding between twisted pairs increases the attenuation.
As a result, the crosstalk channel matrix Hk is row-wise diagonally dominant
(RWDD), since on each row of Hk the diagonal element has the largest mag-
nitude

|hn,n
k | � |hn,m

k | , ∀m 6= n. (5.3)

RWDD implies that the crosstalk channel hn,m
k from a disturber m into a victim

n is always weaker than the direct channel of the victim hn,n
k . Contrast this

with the CWDD described in the previous chapter, where the crosstalk channel
hn,m

k from a disturber into a victim is always weaker than the direct channel
of the disturber hm,m

k .

The degree of RWDD can be characterized with the parameter αk

|hn,m
k | ≤ αk |hn,n

k | , ∀m 6= n. (5.4)

Note that crosstalk precoding is based on joint transmission. As such it requires
the co-location of transmitting modems. So in all channels where crosstalk
precoding can be applied, the RWDD property holds. RWDD has been verified
through extensive measurement campaigns of real binders. In 99% of lines αk

is bounded
αk ≤ Kxffk

√
dcoupling,
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Figure 5.1: Row-wise Diagonal Dominance |h11| � |h12|

where Kxf = −22.5 dB and fk is the frequency on tone k in MHz[7]. Here
dcoupling is the coupling length between the disturber and the victim in kilome-
ters, as defined in (2.14). The coupling length can be upper bounded by the
longest line length in the binder. Hence

αk ≤ Kxffk

√
lmax, (5.5)

where lmax denotes the length of the longest line in the binder. To find a value
for αk that is independent of the particular binder configuration, lmax can be
set to 1.2 km, which is the maximum deployment length for DSL. On typical
lines αk is less than -11.3 dB. The following sections show that RWDD ensures
a well-conditioned crosstalk channel matrix. This results in the near-optimality
of the DP.

5.3 Theoretical Capacity

We start with a bound on the capacity of the downstream DSL channel with co-
ordinated transmitters. This will prove useful in evaluating crosstalk precoder
performance since it provides an upper bound on the achievable data-rate with
any possible crosstalk precoding scheme.

Theorem 5.1 The capacity for user n when all transmitters are subject to a
spectral mask smask

k is upper bounded

Rn ≤ fs

∑

k

bn
k,bc−dsl (5.6)

where

bn
k,bc−dsl ≤ log2

(
1 + (σn

k )
−1

Γ−1smask
k |hn,n

k |2 [1 + (N − 1)αk]
2
)

.



102 Chapter 5. Transmitter Coordination

Proof : We follow similar lines to the proof of Theorem 4.1 and again make use
of the single-user bound. First consider the channel capacity. CO modems are
co-located and transmit jointly, so from an information theoretical perspective
this is a broadcast channel. The single-user bound developed in Section 2.2.4
applies. From (2.21) the achievable bitloading of user n on tone k is limited

bn
k ≤ log2


1 + (σn

k )
−1

Γ−1

(
∑

m

|hn,m
k |

√
sm

k

)2

 . (5.7)

Here the SNR-gap to capacity Γ is included to account for the sub-optimality
of practical coding schemes. Combining this with (5.4), (5.7) and the spectral
mask constraint (5.2) leads to (5.6), which completes the proof.

As in the previous chapter, the lack of spatial diversity in DSL can be seen
in equation (5.6). Here the RWDD of Hk implies that very little increase can
be made in the received signal power through the use of multiple transmitters.
This is the case since the channel from transmitter n to receiver m is much
weaker than the direct channel from transmitter m to receiver m. Note that
the benefit, although small, increases with the crosstalk channel strength αk

and the number of crosstalkers N .

Although spatial diversity is negligible, the use of co-ordinated transmission
is by no means fruitless. Instead of benefiting through spatial diversity, the
primary benefit in DSL channels is crosstalk precoding. That is, co-ordinated
transmission does not increase signal power in DSL channels, but instead de-
creases interference power.

5.4 Zero Forcing Precoder

The simplest precoder design is the zero forcing precoder (ZFP). Define the
vector

x̃k , [x̃1
k, . . . , x̃N

k ]T ,

which contains the symbols intended for each user on tone k. The ZFP multi-
plies the true symbols x̃k with a precoding matrix Pk,zf prior to transmission.
The transmitted symbols are then

xk = Pk,zf x̃k .

The ZFP is based on a zero-forcing criteria, which leads to the following pre-
coding matrix

Pk,zf ,
1

βk,zf
H−1

k ,
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where the scaling factor is defined

βk,zf , max
n

∥∥[H−1
k

]
row n

∥∥ . (5.8)

The scaling factor βk,zf ensures that compliance with the spectral masks (5.2)
is maintained after precoding. Consider

xn
k = [Pk,zf ]row n x̃k ,

= β−1
k,zf

∑

m

[
H−1

k

]
n,m

x̃m
k . (5.9)

The power of the true symbols are set to obey the spectral mask

s̃n
k ≤ smask

k , ∀k, n; (5.10)

where s̃n
k , E

{
|x̃n

k |
2
}

. Under this condition

sn
k = β−2

k,zfE





∣∣∣∣∣
∑

m

[
H−1

k

]
n,m

x̃m
k

∣∣∣∣∣

2




= β−2
k,zf

∑

m

∣∣∣
[
H−1

k

]
n,m

∣∣∣
2

s̃n
k ,

≤ β−2
k,zf

∥∥[H−1
k

]
row n

∥∥2
smask

k ,

≤ smask
k ,

where (5.8) is used in the last line. Hence the ZFP maintains compliance with
the spectral mask constraints.

During transmission the predistortion introduced by the ZFP annihilates with
the crosstalk. The received vector

yk = HkPk,zf x̃k + zk,

= β−1
k,zf x̃k + zk,

and each user experiences a crosstalk free channel. All users experience the
same direct channel gain β−1

k,zf . Unfortunately, this causes all users to experience
the worst channel in the binder. To see this, first note that with the ZFP each
user achieves a data-rate of

bn
k,zfp = log2

(
1 + (σn

k )
−1

Γ−1s̃n
kβ−2

k,zf

)
,

≤ log2

(
1 + (σn

k )−1 Γ−1smask
k β−2

k,zf

)
,

when the modem transmits at the spectral mask. Now consider the upper
bound on the theoretical capacity (5.6). Since bn

k,zfp ≤ bn
k,opt, ∀n; this implies

that

β−2
k,zf ≤ |hn,n

k |2 [1 + (N − 1)αk]
2
, ∀n;
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= [1 + (N − 1)αk]
2
min

n
|hn,n

k |2 .

Hence

bn
k,zfp ≤ log2

(
1 + (σn

k )
−1

Γ−1smask
k [1 + (N − 1)αk]

2
min

m
|hm,m

k |2
)

.

Since [1 + (N − 1)αk]2 ' 1, all users in the binder will experience a direct
channel gain of minm |hm,m

k |. When the line lengths vary significantly, or if one
of the lines in the binder contains a bridged tap, the weakest channel in the
binder is significantly weaker than the other channels. In this case the ZFP
gives extremely sub-optimal performance. Consider, for example, a scenario
with ten 300m lines and one 1200m line. With the ZFP all lines will experience
the direct channel of the 1200m line. In many cases the ZFP leads to even
worse performance than without crosstalk precoding as is shown in Section
5.8.

5.5 Tomlinson-Harashima Precoder

In the previous chapter it was shown that a decision feedback structure can
be used to cancel crosstalk. The users were detected in an iterative fashion.
After each user is detected, their interference is subtracted from the remaining
undetected users. In downstream transmission a similar structure can be used
for crosstalk precoding[59, 58]. This can be seen as the multi-user extension
of the Tomlinson-Harashima precoder, which is commonly used for precoding
against ISI in single-user channels[67, 91].

The structure of the Tomlinson-Harashima Precoder (THP) is now described.
Consider the QR decomposition of the crosstalk channel matrix

HT
k

qr
= QkRk, (5.11)

where Qk is a unitary matrix and Rk is upper triangular. Here (.)T is used to
denote the transpose operation. Now

Hk = RT
k QT

k .

Prior to transmission, the signal is pre-multiplied with Qk such that

xk = Qkx́k , (5.12)

where x́k , [x́1
k, . . . , x́N

k ]T . The received vector is then

yk = HkQkx́k + zk,

= RT
k x́k + zk . (5.13)
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Since Qk is unitary, compliance with the spectral masks (5.2) is maintained
after the precoding operation. To see this, first note that the power of x́n

k is
set to obey the spectral mask

śn
k ≤ smask

k , ∀n;

where śn
k , E

{
|x́n

k |
2
}

. It is assumed that the signal x́n
k of each user is inde-

pendent, which is approximately true[58]. Under this assumption

sn
k = E





∣∣∣∣∣
∑

m

[Qk]n,m x́m
k

∣∣∣∣∣

2


 ,

=
∑

m

∣∣∣[Qk]n,m

∣∣∣
2

śn
k ,

≤ smask
k , ∀n;

where (5.12) is used in the first line, and the unitarity of Qk is used in the last
line.

From (5.13) it is clear that the transmission channel has been transformed into
a lower triangular channel RT

k . This channel is causal in the sense that there is
an order in the crosstalk of the users. User 1 experiences crosstalk from no-one;
user 2 experiences crosstalk only from user 1; user 3 experiences crosstalk only
from users 1 and 2; and so on.

This causal structure admits the use of the Tomlinson-Harashima precoder to
precompensate for the effects of crosstalk. User 1 experiences no crosstalk.
Hence the signal of user 1 can be transmitted directly; that is

x́1
k = x̃1

k,

where x̃n
k denotes the true symbol intended for user n. At this point the

signal transmitted by user 1 is known. This allows the remaining users to
predistort their signals, and annihilate the crosstalk introduced by user 1. User
2 then operates free from crosstalk. The signal transmitted by user 2 is known,
which allows the remaining users to predistort their signals, and annihilate the
crosstalk introduced by user 2. This procedure iterates until all users have
predistorted their signals to annihilate all crosstalk introduced in the channel.
Each user is then detected free from crosstalk. The symbol transmitted by user
n on tone k after Tomlinson-Harashima precoding is thus

x́n
k = modsmask

k

[
x̃n

k −
n−1∑

m=1

rm,n
k

rn,n
k

x́m
k

]
, (5.14)

where the modulo operation is defined

modM [x] , x −
√

M

⌊
x +

√
M/2√

M

⌋
,
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b.c denotes the rounding-down operation[59], and rn,m
k , [Rk]n,m. The modulo

ensures that spectral mask compliance is maintained after precoding. That is,
if x̃k obeys the spectral masks, then x́k does as well.

At the receiver a second modulo operation is applied to estimate the transmit-
ted symbol

x̂n
k = modsmask

k

[
yn

k

rn,n
k

]
,

= modsmask

k


x́n

k +
∑

m6=n

rm,n
k

rn,n
k

x́m
k +

zn
k

rn,n
k


 ,

= modsmask

k

[
x̃n

k +
zn

k

rn,n
k

]
,

= x̃n
k +

z̃n
k

rn,n
k

.

The second line makes use of (5.13) and the property mod (a × mod(b)) =
mod (ab) . The third line makes use of (5.14) and the property

mod (mod(a) + mod(b)) = mod (a + b) .

The effective noise z̃n
k in the fourth line is similar to the original noise zn

k except
that it exhibits a wrap-around effect on the edges of the QAM constellation. If
the QAM constellation has many symbols, the wrap-around effect is rare and
has negligible impact on performance[59]. Under this assumption the data-rate
achieved by user n on tone k is

bn
k,th = log2(1 + (σn

k )−1 Γ−1s̃n
k |rn,n

k |2).
The RWDD of the channel matrix can be used to show that |rn,n

k | ' |hn,n
k |[59].

As a result, for small αk, the THP operates very close to the single-user bound

bn
k,th ' bn

k,bc−dsl.

Whilst the THP gives near-optimal performance, its major drawback is that
it requires a modulo operation at the receiver. This requires a change of the
CP modem design. Millions of CP modems are currently in use, owned and
operated by a multitude of customers. Replacing these modems presents a
huge legacy issue. Furthermore, CO modems and CP modems are typically
manufactured by different hardware vendors, making joint designs difficult.

5.6 Near-optimal Linear Precoder

To address the problems of the THP, this section presents a simple linear pre-
coder that works with existing CP modems. Like the THP, this precoder oper-
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ates close to the single-user bound. The diagonalizing precoder (DP) multiplies
the true symbols x̃k with a precoding matrix Pk,dp prior to transmission. The
transmitted symbols are

xk = Pk,dpx̃k. (5.15)

The DP is based on a channel diagonalizing criterion. After precoding, each
user should see their own direct channel free from crosstalk. Contrast this with
the ZFP where after precoding each user experiences a channel gain of unity,
scaled by β−1

k,zf . The DP precoding matrix is defined

Pk,dp ,
1

βk,dp
H−1

k diag
{

h1,1
k , . . . , hN,N

k

}
,

where the scaling factor is

βk,dp , max
n

∥∥∥
[
H−1

k

]
row n

diag
{

h1,1
k , . . . , hN,N

k

}∥∥∥ . (5.16)

As with the ZF precoder, the scaling factor βk,dp ensures that after precoding
compliance with the spectral masks (5.2) is maintained. That is, if x̃k obeys
the spectral masks, then xk will as well.

During transmission the predistortion introduced by the DP annihilates with
the crosstalk. The received vector is then

yk = HkPk,dpx̃k + zk,

= β−1
k,dpdiag

{
h1,1

k , . . . , hN,N
k

}
x̃k + zk. (5.17)

Application of the DP diagonalizes the channel matrix. Each user now experi-
ences their direct channel, scaled by βk,dp and completely free from interference.
RWDD in the crosstalk channel matrix implies that βk,dp ' 1. As a result, each
user operates close to their single-user bound, and the DP is a near-optimal pre-
coding structure. To see this consider the singular value decomposition (SVD)
of Hk

Hk
svd
= UkΛkV

H
k .

The RWDD of Hk (5.3) ensures that its rows are approximately orthogonal

h
m

k

H
h

n

k '
{
|hn,n

k |2 , n = m;

0, n 6= m.

As a result

UkΛkΛH
k UH

k = HkH
H
k

' diag

{∣∣∣h1,1
k

∣∣∣
2

, . . . ,
∣∣∣hN,N

k

∣∣∣
2
}

.
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This implies that the left singular vectors can be closely approximated as Uk '
IN . Furthermore, the singular values can be approximated

∣∣∣[Λk]n,n

∣∣∣ '
∥∥∥hn

k

∥∥∥ ,

' |hn,n
k | . (5.18)

So
Hk ' ΛkV

H
k . (5.19)

This indicates that the channel can be approximately diagonalized by precod-
ing with the matrix Vk. Since Vk is unitary the precoding operation will
maintain compliance with the spectral masks. The channel is approximately
diagonalized, so each user experiences a channel that is almost crosstalk free.

Equation (5.19) leads to the following approximation for the precoding matrix

Pk,dp ' 1

βk,dp
VkΛ

−1
k diag

{
h1,1

k , . . . , hN,N
k

}
,

' 1

βk,dp
Vk,

where (5.18) is applied in the second line. The motivation behind the DP design
is now clear. Since Pk,dp ' Vk, the DP precoding matrix is close to unitary.
Hence application of the DP causes negligible increase in the transmit power.
Scaling with βk,dp is not necessary to maintain compliance with the spectral
masks, and βk,dp ' 1. As a result the DP achieves near-optimal performance,
operating close to the single-user bound. This observation is made rigorous
through the following theorem.

Theorem 5.2 If A
(m)
min

≥ αkmB
(m)
max, m = 1 . . .N − 1; the data-rate achieved

by the DP can be lower bounded

Rn ≥ fs

∑

k

bn
k,dp−bound, (5.20)

where

bn
k,dp−bound , log2

(
1 + Γ−1 (σn

k )
−1

s̃n
k |hn,n

k |2 f−1(N, αk)
)

,

and f(N, αk), A
(n)
min

and B
(n)
max are defined in (4.13), (4.15) and (4.14) respec-

tively.

Proof : Equation (5.17) implies that after application of the DP the signal at
receiver n is

yn
k = β−1

k,dphn,n
k x̃n

k + zn
k .
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Hence the received signal power for user n on tone k is β−2
k,dps̃n

k |hn,n
k |2, the

received interference power is zero, and the received noise power is σn
k . So the

data-rate achieved by the diagonalizing precoder is

bn
k,dp(s̃n

k ) = log2

(
1 + Γ−1 (σn

k )
−1

β−2
k,dps̃n

k |hn,n
k |2

)
. (5.21)

Define the matrix Gk , [gn,m
k ], where gn,m

k , hn,m
k /hn,n

k . Now

Hk = diag
{

h1,1
k , . . . , hN,N

k

}
Gk,

hence

H−1
k diag

{
h1,1

k , . . . , hN,N
k

}
= G

−1

k . (5.22)

Since the transmitters are co-located at the CO, the DS channel is RWDD

(5.4). This implies that Gk ∈ A(N), where A
(N)
n denotes the set of N × N

diagonally dominant matrices, as defined in Appendix B. Theorem B.2 can be

applied to bound the elements of G
−1

k as follows

∣∣∣∣
[
G

−1

k

]
n,m

∣∣∣∣ ≤
{

A
(N−1)
max /A

(N)
min, n = m;

B
(N−1)
max /A

(N)
min, n 6= m.

(5.23)

Combining (5.16) and (5.22) implies β2
k,dp ≤ f(N, αk,). Combining this with

(5.21) leads to (5.20), which concludes the proof.

The function f(N, αk,n) can be interpreted as an upper bound on the scaling
factor β2

k,dp. Recall that the scaling factor is the increase in transmit power

that results from precoding with H−1
k diag

{
h1,1

k , . . . , hN,N
k

}
. It is included to

ensure that the DP does not increase the transmit power on any line. In RWDD
channels f(N, αk) ' 1. As a result each modem operates at a rate

bn
k,zf ' log2

(
1 + Γ−1σ−1

k s̃n
k |hn,n

k |2
)

.

So the DP completely removes crosstalk with negligible increase in transmit
power. A scaling factor close to unity can be chosen, and each user operates
close to their single-user bound.

Note that the bound can be used to guarantee a data-rate without explicit
knowledge of the crosstalk channels. This is because the bound only depends
on the binder size, direct channel gain, and background noise power. Good
models for these characteristics exist based on extensive measurement cam-
paigns. Crosstalk channels on the other hand are poorly understood and actual
channels can deviate significantly from the few empirical models that exist, see
for example Fig. 2.5. This can make provisioning of services difficult.
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Using the bound (5.20) allows us to overcome this problem. The bound tells us
that the crosstalk channel gain is not important as long as RWDD is observed.
RWDD is a well understood and modeled phenomenon. As a result (5.20)
allows provisioning to be done in a reliable and accurate fashion.

The value for αk from (5.5) is based on worst 1% case models. Hence for 99%
of lines αk,n will be smaller. So in 99% of lines a data-rate above the bound
(5.20) is achieved. So the bound is a useful tool not just for theoretical analysis,
but for provisioning of services as well.

Simulations in Section 5.8 use the bound together with (5.4) to show that the
DP operates close to the single-user bound.

5.7 Spectra Optimization

Part I of this thesis discussed the coordination of DSL modems on a spectral
level. Each modem generates its signal independently, however the transmit
spectra are designed in a joint fashion to mitigate crosstalk.

When signal coordination is used crosstalk can be precoded at the transmitter
side. It is, however, still interesting to optimize the transmit spectra of each
modem to maximize performance. This can be viewed as the combination of
signal and spectra coordination. Each transmitter is subject to a total power
constraint ∑

k

sn
k ≤ Pn, ∀n. (5.24)

As in Part I, the objective is to maximize the rate of user N , subject to tar-
get rate constraints on the other users in the network. Following the same
development in Section 3.3.5, this can be reformulated as a weighted rate-sum
optimization

max
s1,...,s2

∑

n

wnRn s.t.
∑

k

sn
k ≤ Pn, ∀n; (5.25)

sn
k ≥ 0, ∀n, k.

In contrast to Part I, Rn now represents the rate of modem n with crosstalk
precoding. The data-rate Rn is a function of the transmit PSDs s1, . . . , sN , and
also depends on the type of crosstalk precoder used. If an optimal precoder is
used, the objective function becomes convex[99]. Solving (5.25) then requires
the solution of a KN -dimensional convex optimization. Although the cost func-
tion is convex, no closed form solution is known and numerical techniques must
be used instead[99]. Conventional numerical optimization techniques, such as
interior point methods, have a polynomial complexity in the dimensionality of
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the search space. In ADSL K = 256, whilst in VDSL K = 4096. The result-
ing search thus has a high dimensionality, for which conventional optimization
techniques are prohibitively complex.

A low complexity, iterative algorithm has been proposed for the special case
where an unweighted rate-sum is maximized, that is wn = 1 for all n[106].
Unfortunately, since this algorithm cannot optimize a weighted rate-sum, it
cannot ensure that the target rates are achieved. These target rates are essential
to ensure that each customer achieves their desired quality-of-service.

In this section a spectra coordination algorithm is developed for use with the
DP. Since the DP removes all crosstalk, the spectrum coordination problem
decouples into an independent power loading problem for each user. This
reduces complexity considerably. Furthermore, Theorem 5.2 ensures that this
approach operates close to the single-user bound.

5.7.1 Theoretical Capacity

We start by extending the single-user bound from Section 5.3 to DSL modems
that may vary their transmit spectra under a total power constraint. The
resulting upper bound is useful for evaluating crosstalk precoder performance
with optimized spectra.

Theorem 5.3 When the transmit PSD sn
k is allowed to vary under a total

power constraint (5.24), the capacity for user n can be upper bounded

Rn ≤ max
s1,...,sN

fs

∑

k

bn
k,bc−wf ; (5.26)

s.t.
∑

k

sm
k ≤ Pm, ∀m;

sm
k ≥ 0, ∀m, k;

where

bn
k,bc−wf , log2


1 + (σn

k )
−1

Γ−1 |hn,n
k |2


√sn

k + αk

∑

m6=n

√
sm

k




2

 .

Proof : Combining the single-user bound for broadcast channels (2.21) and
RWDD (5.3) yields

bn
k ≤ log2


1 + (σn

k )
−1

Γ−1 |hn,n
k |2


√sn

k + αk

∑

m6=n

√
sm

k




2

 .

Including the total power constraints (5.24) leads to (5.26).
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5.7.2 Near-optimal Linear Precoder

Transmit spectra optimization with the DP is now considered. The optimiza-
tion problem is now

s̃
dp
1 , . . . , s̃dp

N = arg max
es1,...,esN

∑

n

∑

k

wnbn
k,dp(s̃

n
k ); (5.27)

s.t.
∑

k

sn
k ≤ Pn, ∀n;

sn
k ≥ 0, ∀n, k;

where the optimal solution s̃dp
n , [s̃n,dp

1 , . . . , s̃n,dp
K ] and s̃n , [s̃n

1 , . . . , s̃n
K ]. Here

bn
k,dp denotes the bitloading achieved with the DP, which was defined in (5.21)

as
bn
k,dp = log2

(
1 + (σn

k )
−1

Γ−1β−2
k,dp |h

n,n
k |2 s̃n

k

)
, (5.28)

Since the transmit spectra are being optimized spectral masks do not apply.
The system instead operates under a total power constraint (5.24). As a result,
the scaling factor βk,dp can be discarded by setting

βk,dp = 1, ∀k. (5.29)

From (5.15), the signal sent by transmitter n on tone k is

xn
k =

∑

m

pn,m
k,dpx̃m

k ,

where the elements of the precoding matrix are defined pn,m
k,dp , [Pk,dp]n,m.

Hence the power on line n is

sn
k =

∑

m

∣∣∣pn,m
k,dp

∣∣∣
2

s̃m
k . (5.30)

Combining (5.28), (5.29) and (5.30), the original optimization problem (5.27)
becomes

s̃
dp
1 , . . . , s̃dp

N = arg max
es1,...,esN

∑

n

∑

k

wn log2

(
1 + σ−1

k Γ−1 |hn,n
k |2 s̃n

k

)
;

s.t.
∑

k

∑

m

∣∣∣pn,m
k,dp

∣∣∣
2

s̃m
k ≤ Pn, ∀n;

s̃n
k ≥ 0, ∀n, k.

Observe that, when using the DP, the bitrate of each user depends only on its
own transmit PSD. It is independent of the PSDs of the other users since all
interference will be pre-filtered. Unfortunately, the optimization is still coupled
between users. This is the case since the total power constraint on each modem
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Algorithm 5.1 Optimal Power Allocation with the DP

repeat

for each n: s̃n
k =

[
wn

(∑
m λmpm,n

k,dp

)−1

− Γσn
k |hn,n

k |−2

]+
, ∀k

for each n: λn =
[
λn + ε

(∑
k

∑
m pn,m

dp,ks̃m
k − Pn

)]+

until convergence

must be satisfied after the precoding operation. As a result the PSD sent by
a particular user s̃n

k is not equal to the transmit PSD of the corresponding
modem sn

k . These PSDs are coupled through the precoding matrix Pk,dp and
as a result the optimization must be done jointly across all users. Nevertheless,
it is still possible to optimize the transmit PSDs efficiently through the use of
a dual objective.

First note that the objective function is concave and the constraints form a
convex set. As a result the KKT conditions are sufficient for optimality. Ex-
amining these leads to

s̃n
k,dp =

[
wn∑

m λmpm,n
k,dp

− Γσn
k

|hn,n
k |2

]+

.

The power allocation of each user is coupled through the Lagrangian multipliers
λ1, . . . , λN . The Lagrangian multipliers must be chosen such that for each line
n the power constraint is tight

∑

k

∑

m

pn,m
k,dps̃

m
k,dp = Pn,

or the corresponding Lagrangian multiplier λn is zero. An efficient solution
can be found with Alg. 5.1, which has polynomial complexity in N and lin-
ear complexity in K2. This is a significant reduction compared to existing
power allocation algorithms for the broadcast channel, which have polynomial
complexity in KN [106].

Theorem 5.2 shows that, as a result of RWDD, the DP operates close to the
single-user bound. So using the DP in combination with Alg. 5.1 gives near-
optimal performance. This is confirmed through simulation in the following
section.

2Note that this is a significant reduction in complexity when compared to the power
allocation problem in Chapter 3. The basic reason is that power allocation in a BC typically
involves a convex optimization, where-as power allocation in an IC involves a non-convex
optimization.



114 Chapter 5. Transmitter Coordination

300 m

1200 m

150 m
CO/ONU

CP 2

CP 1

CP 8...
.

...
.

Figure 5.2: Downstream VDSL scenario

5.8 Performance

This section evaluates the performance of the DP in a binder of 8 VDSL lines.
The line lengths range from 150m to 1200m in 150m increments as shown in
Fig. 5.2. For all simulations the line diameter is 0.5 mm (24-AWG). Direct and
crosstalk channel transfer functions are generated using the empirical models
described in Section 2.1.2. The target symbol error probability is 10−7 or less.
The coding gain is set to 3 dB and the noise margin to 6 dB. As per the VDSL
standards the tone spacing ∆f is set to 4.3125 kHz and DMT symbol rate
fs to 4 kHz[9][7]. The modems use 4096 tones, and the 998 FDD bandplan.
Background noise is generated using ETSI noise model A[7]. Performance is
compared with the ZFP, THP and the single-user bound.

5.8.1 Fixed Transmit Spectra

Current VDSL standards require that modems transmit under a spectral mask
of -60 dBm/Hz[9][7]. This section evaluates the performance of the DP when
all modems are operating at this mask.

Fig. 5.4 shows the data-rate achieved on each of the lines with the different
crosstalk precoding schemes. As predicted, the ZFP gives quite poor perfor-
mance, with all lines forced to operate at the rate of the weakest line in the
binder, which in this case is the 1200m line. In fact, for all of the lines shorter
than 1200m, the ZF precoder results in worse performance than with no pre-
coding at all.

The DP avoids the problems of the ZFP, and achieves substantial gains, typi-
cally 30 Mbps or more, over conventional systems with no cancellation. As can
be seen in Fig. 5.4 the DP achieves near-optimal performance, operating close
to the single-user bound. This is a direct result of the RWDD of Hk, which
ensures that the scaling parameter βk,dp is always close to unity. The scaling
parameters of the ZFP βk,zf and the DP βk,dp are plotted for each tone in Fig.
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Figure 5.3: Scaling Factor βk

5.3. The scaling parameter in the ZFP is quite large, which results in poor
performance on the shorter lines. On the other hand the scaling parameter in
the DP is typical close to unity, which has negligible effect on performance.

Fig. 5.5 shows the data-rate of the DP as a percentage of the single-user bound.
Performance does not drop below 99% of the single-user bound. The lower
bound on the performance of the DP (5.20) is also included for comparison. As
can be seen the bound is quite tight and guarantees that the DP will achieve
at least 97% of the single-user bound.

5.8.2 Optimized Transmit Spectra

Whilst current VDSL standards require the use of spectral masks, there is
growing interest in the use of adaptive transmit spectra[8]. This section inves-
tigates the performance of the DP with spectra optimized according to Alg.
5.1.

The data-rates achieved on each line are shown in Fig. 5.6. The use of opti-
mized spectra yields a gain of 5-8 Mbps. The benefit is more substantial on
the longer lines, where a 5 Mbps gain can double the achievable bitrate.

Fig. 5.6 shows that crosstalk precoding gives maximum benefit on short lines,
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Figure 5.6: Downstream Data-rate Achieved with Coordinated Transmit Spec-
tra

whilst spectra coordination gives maximum benefit on long lines. This is to
be expected since short lines are crosstalk limited, whilst long lines are noise
limited.

The single-user bound (5.26) is included for comparison. As can be seen the DP
operates close to the single-user bound. Fig. 5.7 shows the data-rate achieved
by the DP as a percentage of the single-user bound. Performance does not drop
below 99% of the single-user bound. The lower bound on the performance of
the DP is also included for comparison. The bound (5.20) guarantees that
the DP with optimized spectra from Alg. 5.1 achieves 97% of the single-user
bound.

5.9 Summary

The previous chapter investigated crosstalk cancellation for upstream DSL, a
technique based on receiver coordination. In downstream transmission, re-
ceivers are not co-located, and crosstalk cancellation is impossible. Instead
crosstalk must be mitigated through transmitter coordination, a technique
known as crosstalk precoding.
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Figure 5.7: Proportion of Theoretical Capacity Achieved by ZF Canceler

This chapter investigated the design of crosstalk precoders for DSL. Existing
designs suffer from poor performance or require the replacement of customer
premises modems, which presents a huge legacy issue.

A novel linear precoder based on a channel diagonalizing criterion was pro-
posed. This design has a low complexity and works with existing customer
premises modems.

Any linear crosstalk precoder must include a scaling factor to ensure that spec-
tral masks are maintained after precoding. In some cases this scaling factor
decreases performance by forcing certain modems to operate below their trans-
mit mask. Fortunately DSL channels with co-located transmitters are row-wise
diagonal dominant. This ensures that the scaling factor of the proposed pre-
coder is close to unity, and has negligible impact on performance.

An upper bound on the capacity of the multi-user DSL channel was derived.
This single-user bound shows that spatial diversity in the DSL environment is
negligible. Therefore the best outcome that a crosstalk precoder can achieve is
the complete pre-filtering of crosstalk without increasing the transmit power.

A lower bound on the data-rate of the diagonalizing precoder (DP) was de-
rived. This bound depends only on the binder size, direct channel gain and
background noise for which reliable models and statistical data exist. As a
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result the performance of the DP can be accurately predicted, which simplifies
service provisioning considerably. This bound shows that the DP operates close
to the single-user bound. So the DP is a low complexity design that works with
existing customer premises modems, and has guaranteed near-optimal perfor-
mance.

The combination of spectral optimization and crosstalk precoding was con-
sidered. The bounds were extended to DSL systems with optimized spectra.
Spectra optimization in a broadcast channel generally involves a highly complex
optimization. Since the DP decouples transmission on each line, the spectrum
on each modem can be optimized through a dual decomposition, leading to a
significant reduction in complexity.
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Chapter 6

Partial Coordination

6.1 Introduction

Crosstalk is the dominant source of performance degradation in modern DSL
systems. In upstream transmission, receivers (RX) can be coordinated on
a signal level since they are co-located at the central office (CO). This al-
lows crosstalk cancellation to be employed. The received signals on different
modems are combined such that crosstalk is cancelled and only the signal of
interest remains. Chapter 4 showed that a simple linear canceler, based on
the ZF criterion, achieves near-optimal performance and leads to spectacular
performance gains1.

In downstream transmission, transmitters (TX) can be coordinated on a signal
level since they are co-located at the CO. This allows crosstalk precoding to
be employed. The symbols to be transmitted are predistorted, such that the
predistortion and crosstalk annihilate during transmission. Chapter 5 showed
that a simple linear precoder, based on the channel diagonalizing criterion,
achieves near-optimal performance and leads to spectacular performance gains.

Whilst the benefits of crosstalk cancellation and precoding are large, the com-
plexity is extremely high, even with the simple linear schemes described above.
For example, in a bundle with 20 users transmitting on 4096 tones and operat-
ing at a block rate of 4000 blocks/s the complexity of linear crosstalk cancella-
tion exceeds 6.5 billion multiplications/s. This is outside the scope of current
implementation and may remain so for several years. Other techniques such
as soft-interference cancellation and non-linear crosstalk cancellation add even

1The work in this chapter was done in close collaboration with Dr. George Ginis, Texas
Instruments, San Jose, CA.
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more complexity.

To address this problem, this chapter develops the concepts of partial can-
cellation and precoding. It is well known that the majority of the crosstalk
experienced by a modem comes from only a few dominant crosstalkers within
the binder. Furthermore, since crosstalk coupling varies dramatically with fre-
quency, the worst effects are limited to a small subset of tones. By exploiting
these properties, partial cancelers and precoders achieve the majority of the
performance of full crosstalk cancellation at a fraction of the run-time com-
plexity.

The rest of this chapter is organised as follows: The system model is described
in Sec. 6.2. Sec. 6.3 discusses the selectivity of crosstalk, and shows that the
majority of crosstalk experienced by a line comes from only a few crosstalkers
within the binder and occurs over only a small selection of tones. This crosstalk
selectivity is exploited by partial cancelers and precoders to reduce run-time
complexity. Sec. 6.4 describes the design of partial cancelers and shows that,
in order to achieve maximum reduction in run-time complexity, both the space
and frequency selectivity of crosstalk must be exploited. Partial precoder design
is discussed in Sec. 6.5. The performance of the different partial cancelers and
precoders is evaluated in Sec. 6.7.

6.2 System Model

Since either transmitting or receiving modems are co-located, it is straightfor-
ward to synchronize the modems. Transmission can then be modeled indepen-
dently on each tone as described in Chapter 2

yk = Hkxk + zk . (6.1)

In this chapter the number of lines in the binder is defined as N +1 to simplify
notation. So the matrix Hk is of size (N + 1)× (N + 1), whilst the vectors yk ,
xk and zk are of length N + 1. Typically the noise is spatially white, and we
make this assumption here

E
{
zkz

H
k

}
= σkIN . (6.2)

6.3 Crosstalk Selectivity

Fig. 6.2 shows a selection of crosstalk channels from a set of measurements of
a 24 AWG cable. As can be seen the severity of crosstalk varies significantly
with both frequency and space. We make two observations:
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Figure 6.1: Direct channels from a measured binder

First, since electromagnetic coupling follows a distanced squared law, the ma-
jority of the crosstalk that a line experiences comes from the 4 or 5 surrounding
lines within the binder. We refer to this as the space-selectivity of crosstalk.
This is illustrated in Fig. 6.3. The near-far effect also gives rise to space-
selectivity; in upstream transmission, modems that are located closer to the
CO will cause more crosstalk than those located further away.

To illustrate the space-selectivity of crosstalk we calculated the proportion of
crosstalk caused by the i largest crosstalkers into user n on tone k. All users had
identical transmit PSDs, so crosstalker m on tone k was larger than crosstalker

m′ at tone k if |hn,m
k | > |hn,m′

k |. The result was averaged across all tones k and
every line n within the binder and is plotted in Fig. 6.4. As can be seen close
to 80% of the crosstalk energy is caused by the 3 largest crosstalkers.

Second, the crosstalk coupling varies significantly with frequency. Electromag-
netic coupling increases with frequency and reflections within the binder cause
nulls in the transfer function. We refer to this as the frequency selectivity of
crosstalk.To illustrate this we evaluated the proportion of crosstalk contained
within the i strongest tones between TX n and RX m. Tone k is said to be
stronger than tone k′ if |hn,m

k | > |hn,m
k′ |. The result was averaged across all

TXs n and RXs m and is plotted in Fig 6.5. As can be seen almost 80% of the
crosstalk energy is contained within half of the tones.

So the effects of crosstalk vary considerably with both space and frequency.
Furthermore, the majority of its effects are contained within a small selection
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of crosstalkers and tones. These observations suggest that the majority of the
performance of full crosstalk cancellation can be achieved by limiting cancel-
lation to the largest crosstalkers, a technique known as partial cancellation.
Some tones will see more significant crosstalkers than others. An efficient de-
sign should scale between conventional single-user detection (SUD) and full
crosstalk cancellation on a tone-by-tone basis. On each tone the design should
choose the appropriate degree of crosstalk cancellation based on the severity
of crosstalk experienced. By only canceling the largest crosstalkers and by
varying the degree of crosstalk cancellation on each tone, partial cancellation
can approach the performance of full cancellation at a fraction of the run-time
complexity.

6.4 Partial Receiver Coordination

6.4.1 Principle

This section investigates the design of partial cancelers, which are used in
upstream transmission where the RXs are co-located at the CO. The estimate of
the transmitted symbols is formed through a linear combination of the received
signals

x̂k = Wkyk.

In the detection of user n, the RX observes the direct line of user n to recover the
signal, and rk,n additional lines to enable crosstalk cancellation. The parameter
rk,n varies both with the tone k and user n to match the severity of crosstalk
experienced by each user on each tone. Note that rk,n = N corresponds to full
cancellation, whilst rk,n = 0 corresponds to no cancellation. Define the set of
extra observation lines

M
n
k , {mk,n(1), . . . , mk,n(rk,n)} .

In a partial canceler, the estimate of the transmitted symbol is formed using a
linear combination of the received signals on the observation lines only. The
received signals on the other lines are not used in estimating xn

k . Hence Wk

has a sparse structure

[Wk]n,m = 0, ∀m /∈ {n, Mn
k} . (6.3)

A ZF design is chosen for the partial canceler, since it was shown in Sec.
4.5 to achieve near-optimal performance. Under the ZF criterion, the partial
cancellation filter removes all crosstalk from crosstalkers in the set Mn

k . Hence

[WkHk]n,m =

{
1, m = n;

0, m ∈ Mn
k .

(6.4)
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Note that, due to the sparseness of Wk, crosstalk cancellation for user n on
tone k now requires only rk,n multiplications/DMT block. Recall that rk,n

denotes the number of crosstalkers cancelled when detecting user n on tone k.
Compare this with the N multiplications required for full cancellation. This
technique has many similarities to hybrid selection/combining from the wireless
field[64, 65, 63, 66], where selection is also used between receive antennas to
reduce complexity and the number of analog front-ends (AFE) required.

6.4.2 Design

The design of the partial cancellation filter Wk is now described. In the detec-
tion of user n on tone k the signals received on lines {n, Mn

k} are used. Define
the vector containing the corresponding received symbols

yrx n
k ,

[
yn

k , y
mk,n(1)
k · · · y

mk,n(rk,n)
k

]T
,

the vector containing the corresponding transmitted symbols

xrx n
k ,

[
xn

k , x
mk,n(1)
k · · · x

mk,n(rk,n)
k

]T
,

and the vector containing the corresponding noise

zrx n
k ,

[
zn

k , z
mk,n(1)
k · · · z

mk,n(rk,n)
k

]T
.

Define the corresponding partial channel matrix H
rx n

k

H
rx n

k ,

[
hn,n

k [Hk]row n, cols Mn
k

[Hk]rows Mn
k

, col n [Hk]rows Mn
k

, cols Mn
k

]
, (6.5)

where [A]rows X, cols Y
denotes the sub-matrix formed from the rows X and

columns Y of matrix A. Define the set of lines not observed in the detection
of user n on tone k

M
n
k , {1, . . . , n − 1, n + 1, . . . , N + 1} \ M

n
k ,

=
{
mk,n(1), . . . , mk,n(N − rk,n)

}
,

where A \ B denotes the elements contained in set A and not in set B. Define
the vector xn

k containing the corresponding transmitted symbols

xrx n
k ,

[
x

mk,n(1)

k · · · x
mk,n(N−rk,n)

k

]T
,

and the vector containing the corresponding noise

zrx n
k ,

[
z

m
k,n

(1)

k · · · z
m

k,n
(N−rk,n)

k

]T
,
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Define the corresponding partial channel matrix

Hrx n
k ,

[
[Hk]row n, cols Mn

k

[Hk]rows Mn
k

, cols Mn
k

]
.

Consider the reduced system model, which only contains the signals observed
in the detection of user n at tone k

yrx n
k = H

rx n

k xrx n
k + Hrx n

k xrx n
k + zrx n

k . (6.6)

Define the 1× (rk,n +1) vector that contains the non-zero elements of Wk used
in the detection of user n as

wn
k ,

[
wn,n

k , w
n,mk,n(1)
k · · · w

n,mk,n(rk,n)
k

]
,

where wn,m
k , [Wk]n,m. The estimate of user n’s symbol is formed

x̂n
k = [Wk]row n yk,

= wn
kyrx n

k , (6.7)

where (6.3) is used in the second line. Under the ZF criterion (6.4), the partial
cancellation filter removes all crosstalk from crosstalkers in the set Mn

k . The
ZF criterion for user n is equivalent to

wn
kH

rx n

k = eH
rx 1,

where erx n is the nth column of the (rk,n + 1) × (rk,n + 1) identity matrix.
Hence

wn
k , eH

rx 1

(
H

rx n

k

)−1

. (6.8)

6.4.3 Achievable Rate

The rate achieved with the partial canceler is now analysed. From (6.6), (6.7)
and (6.8), the estimate of the transmitted symbol is

x̂n
k = xn

k + wn
kHrx n

k xrx n
k + wrx n

k zrx n
k . (6.9)

The first term is the transmitted signal whilst the second and third terms are
the residual crosstalk and filtered noise respectively. Define

G
rx n

k = H
rx n

k diag{hn,n
k , h

mk,n(1),mk,n(1)
k , . . . , h

mk,n(rk,n),mk,n(rk,n)
k }−1. (6.10)

Since the RXs are co-located at the CO, H
rx n

k is CWDD (4.4). This implies

that G
rx n

k ∈ A(N), where A
(N)
n denotes the set of N × N diagonally dominant

matrices, as defined in Appendix B. Now

H
rx n

k = G
rx n

k diag{hn,n
k , h

mk,n(1),mk,n(1)
k , . . . , h

mk,n(rk,n),mk,n(rk,n)
k }. (6.11)
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Combining this with (6.8) yields

wn
k = (hn,n

k )
−1

[(
G

rx n

k

)−1
]

row 1

. (6.12)

Since G
rx n

k ∈ A
(N), theorem B.2 can now be applied to bound the elements of

G
rx n

k . This implies

|[wn
k ]i| ≤

{
|hn,n

k |−1
A

(N−1)
max /A

(N)
min, i = 1;

|hn,n
k |−1

B
(N−1)
max /A

(N)
min, otherwise.

CWDD implies that B
(N−1)
max � 1, A

(N−1)
max ' 1 and A

(N)
min ' 1. Hence

|[wn
k ]i| '

{
|hn,n

k |−1
, i = 1;

0, otherwise.

From (6.9) the post-cancellation signal power is sn
k and the post cancellation

noise power is

E
{
|wn

kzk|2
}

= ‖wn
k‖2

2 σk,

' |hn,n
k |−2

σk ,

where (6.2) is applied in the first line. The residual interference

wn
kHrx n

k xrx n
k ' |hn,n

k |−1
[Hrx n

k ]row 1 xrx n
k ,

= |hn,n
k |−1

∑

m∈Mn
k

hn,m
k xm

k .

The power of the residual interference is thus

E
{
|wrx n

k Hrx n
k xrx n

k |2
}
' |hn,n

k |−2
∑

m∈Mn
k

|hn,m
k |2 sm

k .

The signal to interference plus noise ratio (SINR) at the input of the decision
device is thus

SINRn
k ' |hn,n

k |2 sn
k∑

m∈Mn
k
|hn,m

k |2 sm
k + σk

, (6.13)

and the achievable data-rate for user n on tone k is

bn
k = log2

(
1 + Γ−1SINRn

k

)
.

There are two interesting observations to make a this point. First, as is ex-
pected, the partial canceler completely removes crosstalk from interferers in the
set Mn

k . More surprisingly however, the partial canceler does not change the
statistics of the crosstalk from the interferers outside the set Mn

k . It also does
not change the statistics of the noise. So the CWDD of Hk ensures that the
ZF partial canceler does not enhance the power of the crosstalk from interferers
outside Mn

k nor of the noise.
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6.5 Partial Transmitter Coordination

6.5.1 Principle

This section investigates the design of partial precoders, which are used in
downstream transmission where the TXs are co-located at the CO. The pre-
coded signal is formed through a linear combination of the symbols intended
for each user

xk = Pkx̃k, (6.14)

where x̃k denotes the vector of symbols intended for each RX. Partial precoder
design is slightly different to partial canceler design as described in the previous
section. Partial cancelers are designed in a row-wise fashion. RX n chooses
which crosstalkers it would like to eliminate from its received signal, and then
sets its crosstalk cancellation filter [Wk]row n accordingly. Partial precoders
must be designed in a column-wise fashion. TX m chooses which RXs it would
like to protect from its own signal, and then sets its crosstalk precoding filter
[Pk]col m accordingly. Unfortunately it is very difficult to find a formulation that
allows TX m to choose which RXs to protect, and the resulting optimization
becomes extremely complex.

As an alternative, we chose a design procedure that begins with the RX, as in
partial canceler design. Based on the potential benefit of removing crosstalk on
a tone, each RX decides which TXs it would like to be protected from through
precoding. Define the set of TXs that RX n would like to be protected from as

M
n
k , {mk,n(1), . . . , mk,n(rk,n)} .

Now, define the RXs that would like to be protected from TX m as

N
m
k , {n : m ∈ M

n
k} = {nk,m(1), . . . , nk,m(tk,m)} , (6.15)

where tk,m denotes the cardinality of Nm
k and is, in fact, the number of receivers

who would like crosstalker m precoded out of their received signal on tone k.
In a partial precoder, the signals on lines Nm

k are precoded against crosstalk
from TX m. The signals on the other lines are not precoded against TX m.
Hence Pk has a sparse structure

[Pk]n,m = 0, ∀n /∈ {m, Nm
k } . (6.16)

A DP design is chosen for the partial precoder, since it was shown in Sec.
5.6 to achieve near-optimal performance. Under the DP criterion, the partial
precoding filter prevents crosstalk from being caused to any of the receivers in
the set Nm

k . Hence

[HkPk]n,m =

{
β−1

k,partialh
m,m
k , n = m;

0, n ∈ Nm
k ,

(6.17)
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where the scaling factor βk,partial is added to ensure that spectral masks are
maintained after precoding

βk,partial = min βk,partial, (6.18)

s.t. max
n

‖[Pk]row n‖ ≤ 1.

Note that, due to the sparseness of Pk, crosstalk precoding for TX m on tone
k now requires only tk,m multiplications/DMT block in contrast to the N mul-
tiplications required for full precoding.

6.5.2 Design

The design of the partial precoding filter Pk is now described. When precoding
for crosstalk from TX m, the signals of TXs {m, Nm

k } are modified. Define the
vector containing the corresponding received symbols

ytx m
k ,

[
ym

k , y
nk,m(1)
k · · · y

nk,m(tk,m)
k

]T
,

the vector containing the corresponding transmitted symbols

xtx n
k ,

[
xm

k , x
nk,m(1)
k · · · x

nk,m(tk,m)
k

]T
,

and the vector containing the corresponding noise

ztx m
k ,

[
zm

k , z
nk,m(1)
k · · · z

nk,m(tk,m)
k

]T
.

Define the corresponding partial channel matrix H
tx m

k

H
tx m

k ,

[
hm,m

k [Hk]row m, cols Nm
k

[Hk]rows Nm
k

, colm [Hk]rows Nm
k

, cols Nm
k

]
, (6.19)

Define the set of lines whose signals are not modified during the precoding of
user m on tone k

N
m
k , {1, . . . , m − 1, m + 1, . . . , N + 1} \ N

m
k ,

=
{
nk,m(1), . . . , nk,m(N − tk,m)

}
,

Define the vector xtx m
k containing the corresponding transmitted symbols

xtx m
k ,

[
x

nk,m(1)

k · · · x
nk,m(N−tk,m)

k

]T
,

and the vector containing the corresponding noise

ztx m
k ,

[
z

n
k,m

(1)

k · · · z
n

k,m
(N−tk,m)

k

]T
,
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Define the corresponding partial channel matrix

Htx m
k ,

[
[Hk]row m, cols Nm

k

[Hk]rows N
m
k

, cols N
m
k

]
.

Consider the reduced system model, which only contains the signals used in
the precoding of TX m on tone k

ytx m
k = H

tx m

k xtx m
k + Htx m

k xtx m
k + ztx m

k . (6.20)

Define the (tk,m +1)×1 vector that contains the non-zero elements of Pk used
in the precoding of TX m as

pm
k ,

[
pm,m

k , p
nk,m(1),m
k · · · p

nk,m(tk,m),m
k

]T
,

where pn,m
k , [Pk ]n,m. Hence

[Pk]n,m =





[pm
k ]1 , n = m;

[pm
k ]i+1 , n = nk,m(i);

0, otherwise.

(6.21)

Under the DP criterion (6.17), the partial precoder protects all RXs in the set
Nm

k from the crosstalk of TX m. The DP criterion for TX m is thus

H
tx m

k pm
k = β−1

k,partialh
m,m
k etx 1,

where etx m is the mth column of the (tk,m + 1) × (tk,m + 1) identity matrix.
Hence

pm
k , β−1

k,partialh
m,m
k

(
H

tx m

k

)−1

etx 1, (6.22)

6.5.3 Achievable Rate

The rate achieved with the partial precoder is now analysed. Using (6.1),
(6.17), (6.15) and (6.14) the signal at RX n is

yn
k = [Hk]row n Pkx̃k + zn

k ,

= β−1
k,partialh

n,n
k x̃n

k +
∑

m∈Mn
k

hn,m
k

∑

i

pm,i
k x̃i

k + zn
k . (6.23)

The first term is the transmitted signal whilst the second and third terms are
the residual crosstalk and noise respectively. Define

G
tx m

k = diag{hm,m
k , h

nk,m(1),nk,m(1)
k , . . . , h

,nk,m(tk,m),nk,m(tk,m)
k }−1H

tx m

k .
(6.24)
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Since the TXs are co-located at the CO, H
tx m

k is RWDD (4.4). This implies

that G
tx m

k ∈ A(N), where A
(N)
n denotes the set of N ×N diagonally dominant

matrices, as defined in Appendix B. Now

H
tx m

k = diag{hm,m
k , h

nk,m(1),nk,m(1)
k , . . . , h

,nk,m(tk,m),nk,m(tk,m)
k }Gtx m

k . (6.25)

Combining this with (6.22) yields

pm
k = β−1

k,partial

[(
G

tx m

k

)−1
]

col 1

. (6.26)

Since G
tx n

k ∈ A(N), theorem B.2 can now be applied to bound the elements of

G
tx n

k . This implies

|[pm
k ]i| ≤

{
β−1

k,partialA
(N−1)
max /A

(N)
min, i = 1;

β−1
k,partialB

(N−1)
max /A

(N)
min, otherwise.

RWDD implies that B
(N−1)
max � 1, A

(N−1)
max ' 1 and A

(N)
min ' 1. Hence

|[pm
k ]i| '

{
β−1

k,partial, i = 1;

0, otherwise.

Hence from (6.21)

∣∣∣[Pk]n,m

∣∣∣ '
{

β−1
k,partial, n = m;

0, otherwise.
(6.27)

From (6.18) and (6.27) it is clear that setting βk,partial to unity will approx-
imately maintain the spectral masks. Combining this with (6.23) and (6.27)
leads to the following approximation for the received signal

yn
k ' hn,n

k x̃n
k +

∑

m∈Mn
k

hn,m
k x̃m

k + zn
k .

The power of the residual interference is

E





∣∣∣∣∣∣

∑

m∈Mn
k

hn,m
k x̃m

k

∣∣∣∣∣∣

2




=
∑

m∈Mn
k

|hn,m
k |2 E

{
|x̃m

k |2
}

,

'
∑

m∈Mn
k

|hn,m
k |2 sm

k ,

where (6.14) and (6.27) are applied in the second line. The SINR at the input
of the decision device is thus

SINRn
k ' |hn,n

k |2 sn
k∑

m∈Mn
k
|hn,m

k |2 sm
k + σk

, (6.28)
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and the achievable data-rate for user n on tone k is

bn
k = log2

(
1 + Γ−1SINRn

k

)
.

There are two interesting observations to make a this point. First, as is ex-
pected, the partial precoder completely removes crosstalk from interferers in the
set Mn

k . More surprisingly however, the partial precoder does not significantly
change the statistics on any of the lines. That is, E

{
xkx

H
k

}
' E

{
x̃kx̃

H
k

}
. So

the RWDD of Hk ensures that the DP partial precoder does not increase the
power of, or introduce correlation in to, the signals on the lines.

6.6 Complexity Distribution

The previous sections described the procedure for designing partial cancelers
and precoders for a particular tone with a given complexity rk,n. Typically, the
crosstalk canceler or precoder must be designed according to a given complexity
budget for all tones k = 1 . . . K. This section investigates the distribution of
complexity across frequency.

Let the available complexity of the crosstalk canceler be cK multiplications /
DMT-block / user, such that

∑

k

|Mn
k | ≤ cK, ∀n,

where |A| denotes the cardinality of set A. This corresponds to c times the com-
plexity of the conventional frequency domain equalizer, which is implemented
in existing DSL modems. The problem is now to distribute the available com-
plexity across frequency such that the net data-rate is maximized

max
{Mn

k}k=1,...,K

∑

k

bn
k , s.t.

∑

k

|Mn
k | ≤ cK. (6.29)

This section investigates algorithms for solving this problem. The optimal
algorithm is described, together with several simpler heuristic methods. All
algorithms exploit space-selectivity, frequency-selectivity or a combination of
both in order to reduce run-time complexity. The following sections describe
complexity distribution in partial cancelers, however the algorithms are also
directly applicable to partial precoders.

6.6.1 Line Selection

The majority of the crosstalk experienced by a modem comes from only a
few dominant crosstalkers within the binder. We refer to this as the space-
selectivity of crosstalk, and it can be exploited to reduce the run-time com-
plexity of crosstalk cancellation. In practice, this corresponds to the partial
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Algorithm 6.1 Line Selection Only

rk,n = c, ∀n, k.

canceler processing only a subset of Mn
k of the signals on the CO lines when

detecting user n. This section first investigates the optimal choice for the sub-
set Mn

k . The problem is to maximize the data-rate given a limited amount of
run-time complexity,

max
M

n
k

bn
k s.t. |Mn

k | ≤ rk,n, (6.30)

where bn
k is the rate of user n on tone k. From (6.13) and (6.28), maximiz-

ing SINRn
k , and thus data-rate bn

k , corresponds to minimizing the amount of
crosstalk in the set M

n
k . So the data-rate is maximized by setting M

n
k to con-

tain the largest crosstalkers of user n on tone k. Define the indices of the
crosstalkers of user n on tone k sorted in order of crosstalk strength

order {qk,n(1), . . . , qk,n(N)} ;

s.t.
∣∣∣hn,qk,n(i)

k

∣∣∣
2

s
qk,n(i)
k ≥

∣∣∣hn,qk,n(i+1)
k

∣∣∣
2

s
qk,n(i+1)
k , ∀i;

qk,n(i) 6= n, ∀i.

Remark 6.1 Optimal Receive Line Selection

In CWDD US channels and RWDD DS channels, the set Mn
k which maximizes

the data-rate of user n on tone k subject to a complexity constraint of rk,n

multiplications/DMT-block (see optimisation in (6.30)) is

M
n
k = {qk,n(1), . . . , qk,n(rk,n)} .

Proof : Follows from examination of (6.13) for US and (6.28) for DS.

This suggests the simple partial canceler design in Alg. 6.1. Accordingly, the
partial canceler simply cancels the c largest crosstalkers on each tone.

This algorithm is only capable of exploiting space-selectivity to reduce run-
time complexity. The degree of partial cancellation is equal on all tones, so
the algorithm cannot exploit the frequency-selectivity of the crosstalk channel.
As will be shown, this leads to poor performance compared to algorithms that
exploit both space and frequency-selectivity. The advantage of this algorithm
is its simplicity. It requires only O(KN) multiplications and K length-N sorts
to initialize the partial canceler for each user. Here we define initialization
complexity as the complexity of determining Mn

k , ∀k. Initialization complexity
does not include actual calculation of the crosstalk cancellation parameters
wn

k for each tone. This requires O(
∑

k(rk,n + 1)3) multiplications for user n
regardless of the partial cancellation algorithm employed.
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The initialization complexities, in terms of multiplication and logarithm op-
erations per user, of the different partial cancellation algorithms are listed in
Tab. 6.1. The required number of sort operations are listed in Tab. 6.2. All
algorithms have equal run-time complexity. The initialization complexity for
partial precoders is identical to that of the partial cancelers.

6.6.2 Tone Selection

The previous section described an algorithm that only exploits the space se-
lectivity of crosstalk, i.e. the fact that crosstalk varies significantly between
different lines. Crosstalk coupling also varies significantly with frequency, a
property that can also be exploited to reduce run-time complexity.

In low frequencies crosstalk coupling is minimal so crosstalk cancellation yields
minimal gains. In higher frequencies crosstalk coupling is severe. However, in
high frequencies the direct channel attenuation is so great that the modems
can only achieve a low bitloading, even in the absence of crosstalk. This lim-
its the gains of crosstalk cancellation. Thus the largest gains from crosstalk
cancellation are experienced in the intermediate frequencies, and this is where
most of the available run-time complexity should allocated.

Consider a crosstalk canceler that only operates on a subset of tones Kn when
detecting user n. This section investigates the optimal choice for the subset Kn.
The problem is to maximize the data-rate given a limited amount of run-time
complexity,

max
Kn

∑

k∈Kn

bn
k (N) +

∑

k/∈Kn

bn
k(0) s.t. |Kn| ≤ cK/N, (6.31)

where bn
k (rk,n) is defined as the rate achieved by user n on tone k when the

rk,n largest crosstalkers are cancelled,

bn
k (rk,n) , log2


1 +

1

Γ

|hn,n
k |2 sn

k

∑N
i=rk,n+1

∣∣∣hn,qk,n(i)
k

∣∣∣
2

s
qk,n(i)
k + σk


 . (6.32)

Define the gain of full crosstalk cancellation, rk,n = N , as

gk,n , bn
k (N) − bn

k(0),

and define the tone indices ordered by this as2

order {kn(1), . . . , kn(K)} ;
s.t. gkn(i),n ≥ gkn(i+1),n, ∀i.

2Note that gk,n can be efficiently calculated on a logarithmic scale by dividing the argu-
ments of the logarithms in bn

k
(N) and bn

k
(0).
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Algorithm 6.2 Tone Selection Only

rk,n =

{
N, k ∈ {kn(1), . . . , kn(cK/N)} ;

0, otherwise.

Remark 6.2 Optimal Tone Selection

The set Kn
k which maximizes the data-rate of user n subject to a complexity

constraint of cK multiplications/DMT-block (see optimisation in (6.31)) is

Kn = {kn(1), . . . , kn(cK/N)} .

This suggests the simple partial canceler design in Alg. 6.2. This algorithm
employs full crosstalk cancellation, rk,n = N , on the cK/N tones with the
largest gain and no cancellation on all other tones. This leads to a run-time
complexity of cK multiplications/DMT-block/user.

Note that in this algorithm rk,n is restricted to the values 0 and N ; it is not
possible to only cancel the largest crosstalkers and the space-selectivity of the
crosstalk channel is ignored. The initialization complexity of this algorithm is
O(KN) multiplications and one sort of size K, per user.

6.6.3 Simple Joint Tone-Line Selection

So far, sections 6.1 and 6.2 have described partial cancellation algorithms that
exploit only one form of selectivity in the crosstalk channel. To achieve the
maximum reduction in run-time complexity it is necessary to exploit both space
and frequency-selectivity together. An efficient algorithm should adapt the
degree of crosstalk cancellation on each tone to match the potential gain. In
practice this means that rk,n must be allowed to take on values other than 0
or N . It must also be allowed to take on different values as the tone k varies.

Sec. 6.4.3 showed that observing the direct line of a crosstalker allows the
partial canceler to remove the crosstalk from that line completely. Hence line
selection is equivalent to choosing the set of crosstalkers to be cancelled. When
combined with tone selection, the partial canceler design problem is essentially
a choice of which crosstalker-tone pairs to cancel in the detection of a given
user. Similarly, in a crosstalk precoder, the design problem is to chose which
crosstalker-tone pairs to precode against, when protecting a given user.

The rate improvement from canceling a particular crosstalker on a particular
tone is dependent on the other crosstalkers that have already been canceled
on that tone; there is an inherent coupling in crosstalker selection and this
complicates the line selection problem substantially. The algorithm described
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Algorithm 6.3 Simple Tone-Line Selection

M
n
k = {m : (m, k) ∈ {dn(1), . . . , dn(cK)}} .

in this section removes this coupling by ignoring the effect of other crosstalkers
in the system. This greatly simplifies crosstalker-tone pair selection with only
a small performance penalty, as is demonstrated in Sec. 6.7.

Define the gain of cancelling crosstalker m on tone k in the detection of user
n, and in the absence of all other crosstalkers3

gk,n(m) , log

(
1 +

1

Γ

|hn,n
k |2 sn

k

σk

)
− log

(
1 +

1

Γ

|hn,n
k |2 sn

k

|hn,m
k |2 sm

k + σk

)
.

Define crosstalker-tone pair dn(i) , (mn(i), kn(i)) and its corresponding gain
gn (dn(i)) , gkn(i),n (mn(i)). Now define the indicies of the crosstalker-tone
pairs ordered by gain

order {dn(1), . . . , dn(KN)} ;
s.t. gn (dn(i)) ≥ gn (dn(i + 1)) , ∀i.

This suggests the simplified joint tone-line selection algorithm in Alg. 6.3. In
the detection of user n, the partial canceler observes the signal at line m on
tone k if tone-line pair (m, k) has a large gain

(m, k) ∈ {dn(1), . . . , dn(cK)} .

This leads to a run-time complexity of cK multiplications/DMT-block/user.
The benefit of this algorithm is its low complexity. Pair selection for one
user has a complexity of O(KN) multiplications and one sort of size KN .
Furthermore, this algorithm exploits both the space and frequency-selectivity
of the crosstalk channel, which allows it to cancel the largest crosstalkers on the
tones where they do the most harm. In Sec. 6.7 it is shown that this algorithm
leads to near-optimal performance.

6.6.4 Optimum Joint Tone-Line Selection

It is interesting to evaluate the sub-optimality of the different algorithms with
an upper bound achieved by the truly optimal partial cancellation algorithm.
The partial canceler design problem is formulated in (6.29). Remark 6.1 implies
that the optimal set of extra lines, Mn

k , to observe when detecting user n on
tone k corresponds to the largest crosstalkers of user n on tone k. This allows us

3Note that gk,n(m) can be efficiently calculated on a logarithmic scale by dividing the
arguments of each log function.
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to determine Mn
k in a straight-forward way once rk,n has been determined. The

problem is now one of resource allocation. Given cK multiplications/user, the
optimal algorithm must distribute these across tones such that the data-rate is
maximized

max
{rk,n}

k=1,...,K

∑

k

bn
k , s.t.

∑

k

rk,n ≤ cK.

An exhaustive search could require the evaluation of up to NK different allo-
cations. In VDSL K = 4096, for which an exhaustive search is numerically
intractable.

Due to the structure of the problem a greedy algorithm, listed as Alg. 6.4, can
be applied to iteratively find the optimal allocation for some values of c. The
greedy algorithm is optimal, efficient and has a tractable complexity.

The algorithm cannot find a solution for any arbitrary value of c, nevertheless
the range of values of c for which the algorithm can find a solution are so closely
spaced that this is not a practical problem. Define the value of canceling r
crosstalkers on tone k as

vk,n(r) =
bn
k (r) − bn

k (0)

r
.

Recall that bn
k (r) is the rate achieved by user n on tone k when the r largest

crosstalkers are canceled and is evaluated using (6.32). Value vk,n(r) is the
increase in data-rate (benefit) divided by the increase in run-time complexity
(cost). It measures the increase in data-rate per multiplication for user n when
r multiplications are spent on tone k. The algorithm begins by initializing
vk,n(r) for all values of r and k. It then proceeds as follows

1. Find choice of tone k and number of cancelled crosstalkers r with largest
value vk,n(r). Store this as (ks, rs).

2. Set the number of lines to be observed on tone ks to rs, and

M
n
ks

= {qks,n(1), . . . , qks,n(rs)} .

3. Set the value of canceling rs or fewer crosstalkers on tone ks to zero. This
prevents re-selection of previously selected pairs.

4. Update the value of canceling rs +1 or more crosstalkers on tone ks. The
data-rate increase and cost should be relative to the currently selected
number of crosstalkers.

The algorithm iterates through steps 1-4 until the allocated complexity exceeds
cK. This yields an upper bound on partial cancellation performance for a given
complexity. Since the algorithm allocates at most N multiplications in each
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Algorithm 6.4 Optimal Line-Tone Selection

init vk,n(r) = (bn
k (r) − bn

k (0)) /r, ∀ k, r > 0;
repeat

(ks, rs) = argmax(k,r) vk,n(r);
rks,n = rs;
vks,n(r) = 0, ∀r ≤ rs;
vks,n(r) =

(
bn
ks

(r) − bn
ks

(rs)
)
/ (r − rs) , ∀r > rs;

while
∑

k rk,n < cK.

iteration, the total allocated complexity will be at the most cK + N . In VDSL
K = 4096, and typically cK � N . Hence the difference between the desired
run-time complexity and that of the solution provided by the algorithm is
minimal. So the upper bound is tight.

Like Alg. 6.3, this algorithm exploits both the space and frequency-selectivity of
the crosstalk channel to reduce run-time complexity. The algorithm generates a
resource allocation at the end of each iteration that is optimal in the sense that
of all resource allocations of equal run-time complexity the allocation generated
by this algorithm achieves the highest data-rate. Unfortunately, this algorithm
is considerably more complex than Alg. 6.3. Pair selection for a single user
requires O(KN2) multiplications and O(KN) logarithm operations. It is hard
to define the exact sorting complexity since it varies significantly with the
scenario. Sorting complexity is typically much higher than any of the other
algorithms and can require up to KN sort operations that can each have sizes
as large as KN .

6.6.5 Complexity Distribution between Users

So far we have limited the run-time complexity of detecting each user to cK
such that ∑

k

|Mn
k | ≤ cK, ∀n.

If crosstalk cancellation of all lines in a binder is integrated into a single pro-
cessing module at the CO, then multiplications can be shared between users.
That is, the true constraint is on the total complexity of crosstalk cancellation
for all users

N+1∑

n=1

∑

k

|Mn
k | ≤ cK (N + 1) .

The available complexity can be distributed based on the target rates of each
user. Denote the number of multiplications/DMT-block allocated to user n as
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Table 6.1: Initialization Complexity of Different Algorithms (per user)

Initialization Complexity
Scheme Multiplications Logs

Line Selection Only KN 0
Tone Selection Only K(N + 5) 0

Simple Joint Selection 3K(N + 1) 0
Optimal Joint Selection K(0.5N 2 + 2.5N + 3) K(N + 1)

Table 6.2: Initialization Complexity of Different Algorithms (per user)

Sort Operations
Scheme Sort Size N Sort Size K Sort Size KN

Line Selection Only K 0 0
Tone Selection Only 0 1 0

Simple Joint Selection 0 0 1
Optimal Joint Selection 0 0 KN

κn. Then

κn = µncK (N + 1) , ∀n; s.t.
∑

n

µn = 1.

Here µn is the parameter that determines the proportion of computing resources
allocated to user n. This allows partial cancellation to be viewed as a resource
allocation not only across tones, but across users as well. Given a fixed number
of multiplications, these must be divided between users based on the target
rates of each user. In a similar fashion to the multi-user power allocation from
Chapter 3, a rate region can be defined as the set of achievable rate-tuples
under a given complexity constraint. This allows an operator to visualise the
different trade-offs that can be achieved between the rates of different users
inside a binder.

Limiting crosstalk cancellation on each tone to the users who benefit the most
leads to further reductions in run-time complexity with minimal performance
loss. This is demonstrated in Sec. 6.7.1.

6.7 Performance

This section compares the performance of the partial cancellation algorithms
described in the previous section. Performance is compared over a range of sce-
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narios in crosstalk channels that exhibit both space and frequency-selectivity.
As will be shown, the ability to exploit both space and frequency-selectivity is
essential for achieving low run-time complexity in all scenarios.

In all simulations the line diameter is 0.5 mm (24-AWG). The target symbol
error probability is 10−7 or less. The coding gain and noise margin are set to 3
dB and 6 dB respectively. The maximum bitloading is not constrained. As per
the VDSL standards the tone spacing ∆f and DMT symbol rate fs are set to
4.3125 kHz and 4 kHz respectively[9][7]. The modems use a transmit mask of
−60 dBm/Hz according to FDD bandplan 998[9]. Background noise was ETSI
Type A[7].

6.7.1 Upstream

This section describes the performance of the different algorithms in upstream
transmission. We use semi-empirical transfer functions from the ETSI VDSL
standards[7]. Note that in these channel models each user has identical crosstalk
channels to all crosstalkers of equal line length. That is, the variation of
crosstalk channel attenuation with the separation between lines within the
binder is not modeled. However, when a binder consists of lines of varying
length the model does capture the near-far effect. All users will see the modems
located closest to the CO (near-end) as the largest sources of crosstalk. On the
other hand when a binder consists of lines of equal length all users will see
equal crosstalk from all other users. There will then be no space-selectivity in
the crosstalk channel model.

In reality we would expect more space-selectivity than is contained within these
channel models. Hence we can expect the reduction in run-time complexity to
be even larger than that shown here. The number of lines in the binder is
always 8, so N = 7.

Equidistant Lines

In the first scenario the binder contains 8× 1000m lines. Since the lines are of
equal length the crosstalk channels exhibit frequency-selectivity only; no space-
selectivity is present. Shown in Fig. 6.6 are the rates achieved by each of the
algorithms versus run-time complexity. Complexity is shown as a percentage
relative to full crosstalk cancellation (c = N).

Alg. 6.1 can only exploit space-selectivity. There is no space-selectivity in
this scenario so this algorithm gives extremely poor performance. Worst of all,
we actually see a non-convex rate vs. run-time complexity curve. So partial
cancellation gives worse performance than time-sharing. In other words, a
system could do full crosstalk cancellation for a fraction of the time, and no
cancellation for the rest, and this would lead to better performance than Alg.
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Figure 6.6: Data-rate vs. Run-time Complexity (Equidistant Lines)

6.1 with the same run-time complexity. The reason for this is as follows. As
the number of crosstalkers canceled pk,n increases, the increase in signal-to-
interference ratio (SIR) grows rapidly.

This is illustrated through the following example. Consider a binder with seven
crosstalkers. Let the crosstalkers have identical crosstalk channels χn

k to user
n as is the case in our simulation. Cancelling the first crosstalker causes the
SIR to increase from

1

7
|hn,n

k |2|χn
k |−2 −→ 1

6
|hn,n

k |2|χn
k |−2.

Cancelling the sixth crosstalker gives a much larger SIR increase from

1

2
|hn,n

k |2|χn
k |−2 −→ |hn,n

k |2|χn
k |−2.

In general cancelling the pth crosstalker leads to an SIR increase by a factor of

(N − p + 1)(N − p)−1.

So the increase in SIR grows with rapidly with p as p → N . Recall that bn
k =

log (1 + SINRn
k ) ' SINRn

k for low SINRn
k . So when crosstalkers have equal

strength and the SINR is low, data-rate gain will grow rapidly with the number
of crosstalkers cancelled p. This is why cancelling N crosstalkers typically gives
greater than N times the data-rate gain of canceling one crosstalker. This leads
to the non-convex rate-complexity curve of Fig. 6.6.
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When the channel exhibits space-selectivity the first crosstalker causes much
more interference than the second and so on. This effect counter-acts the rapid
growth of SIR with p. As a result the best trade-off between performance
and complexity usually occurs somewhere between no cancellation and full
cancellation.

Alg. 6.2 cannot exploit space-selectivity. In this scenario this is not a problem
since all crosstalkers have equal strength. Alg. 6.2 can implement a form of
frequency-sharing. This is analogous to the time-sharing just discussed and
allows this algorithm to cancel e.g. 6 crosstalkers on half of the tones instead
of 3 crosstalkers on all of the tones. For this reason Alg. 6.2 will always give a
convex rate vs. complexity curve. Comparing the performance of Alg. 6.2 to
the optimal algorithm shows that Alg. 6.2 achieves near-optimal performance
in this scenario.

Alg. 6.3 also gives near-optimal performance. Note that with 29% of the
complexity of full crosstalk cancellation the partial canceler achieves 89% of
the performance gains.

Near-Far Scenario

In this scenario the binder contains 4×300m lines and 4×1200m lines. The lines
suffer the near-far effect and all users see the 300m lines as the dominant source
of crosstalk. This space-selectivity assists the partial cancellation algorithms in
reducing run-time complexity. Frequency-selectivity is present in this scenario
and is most pronounced on far-end lines. Near-end lines have relatively flat
channels and benefit less from algorithms which exploit frequency-selectivity
alone.

Fig. 6.7 shows the rates of the 300m near-end lines vs. complexity for each of
the algorithms. Fig. 6.8 shows the same for the 1200m far-end lines.

Alg. 6.1 cannot exploit frequency-selectivity. On near-end lines frequency-
selectivity is minimal and reasonable performance is still achieved. Again we
see a non-convex rate-complexity curve however above 43% complexity Alg.
6.1 gives near-optimal performance. On far-end users frequency-selectivity is
pronounced and Alg. 6.1 gives poor performance.

Alg. 6.2 cannot exploit space-selectivity and on near-end users this leads to
poor performance; the rates achieved are identical to time sharing. On far-
end users frequency-selectivity is pronounced and this algorithm still achieves
reasonable performance despite its inability to exploit space-selectivity.

Alg. 6.3 exploits both space and frequency-selectivity. As a result it achieves
near-optimal performance for both near and far-end users. With 43% complex-
ity this algorithm achieves 99% of the performance gains on near-end users. On
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Figure 6.7: Near-end Data-rate vs. Run-time Complexity
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Figure 6.8: Far-end Data-rate vs. Run-time Complexity
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Figure 6.9: Achievable Rate Regions vs. Complexity (Simple Joint Selection)

far-end users 29% complexity achieves 97% of the performance gains.

Complexity Distribution between Users

The distribution of run-time complexity between users, as described in Sec.
6.6.5, is now discussed. Fig. 6.9 shows the rate regions under varying com-
plexities c using Alg. 6.3. The rate region was constructed by dividing mul-
tiplications between the two classes of near-end and far-end users. Users of
one class receive an equal number of multiplications; 2µnearcK and 2µfarcK
multiplications/DMT-block for the near-end and far-end users respectively. By
varying the parameter µfar the boundary of the rate region is traced. Note that
µnear = 1−µfar. Fig. 6.9 shows that with 29% of the run-time complexity of full
cancellation (c = 2) the partial canceler achieves the majority of the operating
points within the rate region.

In Fig. 6.10 the rate regions of the different partial cancellation algorithms are
compared for c = 2. Note the considerably larger rate region which is achieved
by exploiting both space and frequency-selectivity in Alg. 6.3 and Alg. 6.4.

It is clear that the performance of algorithms that exploit only one type of selec-
tivity, such as Alg. 6.1 and Alg. 6.2, varies considerably with the scenario. By
exploiting both space and frequency-selectivity Alg. 6.3 consistently gave near-
optimal performance. This algorithm also has a significantly lower complexity
than the optimal algorithm, Alg. 6.4. So Alg. 6.4 is a computationally simple
approach for partial crosstalk canceler design that leads to low initialization
complexity, low run-time complexity and near-optimal performance.
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Figure 6.10: Achievable Rate Regions of Different Algorithms (29% complexity)

6.7.2 Downstream

This section describes the performance of the different algorithms in down-
stream transmission. Again it will be made clear that the ability to exploit
both space and frequency-selectivity is essential for achieving the lowest pos-
sible run-time complexity. The simulations use a set of measured crosstalk
channels from a 0.5 mm (24 AWG) 8-pair cable. The first 4 pairs are 900 m
long, the last 4 are 1200 m The direct channels are depicted in Fig. 6.1 and
the crosstalk channels in Fig. 6.2. Other simulation parameters are the same
as in the upstream scenario.

The distribution of run-time complexity between users, as described in Sec.
6.6.5, is evaluated. Fig. 6.11 shows the rate regions for varying complexities c
using Alg. 6.3. Fig. 6.9 indicates that with 30% of the run-time complexity
(c = 2.4) of full precoding, the partial precoder achieves the majority of the
operating points in the rate region.

In Fig. 6.10 the rate regions of the different algorithms are compared with 20%
complexity (c = 1.6). Note the considerably larger rate region that is achieved
by exploiting both space and frequency-selectivity in Alg. 6.3.

To illustrate the potential gains, consider the case when the 1200 m lines have
a target rate of 20 Mbps. Tab. 6.3 then shows the rates that can be achieved
on the 900 m lines. The allocation of complexity between users is shown, along
with the rate gain as a proportion of full cancellation. By definition the rate
gain of no cancellation is 0%, and the rate gain of full cancellation is 100%.

Essentially the algorithms allocate just enough complexity to the 1200 m lines
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Table 6.3: Achievable data-rates with different algorithms

Rate Gain (%) Rate (Mbps)
Precoding Technique µfar 900 m 1200 m 900 m 1200 m

None - 0 0 22.7 17.2
Tone Selection 0.8 23 70 26.4 20.0
Line Selection 0.6 41 70 29.5 20.0

Simple Joint Selection 0.2 80 70 35.9 20.0
Optimal Joint Selection 0.2 80 70 35.9 20.0

Full - 100 100 39.1 21.2

Table 6.4: Complexity distribution with different algorithms

Complexity (%)
Precoding Technique µfar Total 900 m 1200 m

None - 0 0 0
Tone Selection 0.8 20 8 32
Line Selection 0.6 20 16 24

Simple Joint Selection 0.2 20 32 8
Optimal Joint Selection 0.2 20 32 8

Full - 100 100 100
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such that their target rate is achieved. This corresponds to finding the smallest
possible µfar, that still achieves 20 Mbps. Once this is done, any left over
complexity is allocated to the 900 m lines. The better a partial precoding
algorithm is, the smaller the value of µfar it will be able to reach whilst still
achieving the 1200 m target rate.

With tone selection µfar = 0.8 is required achieve the target rate on the 1200
m lines. This allocates 80% of the available complexity to the 1200 m lines.
With the remaining 20% the rate on the 900 m lines can be increased to 26.4
Mbps, which corresponds to 23% of the achievable rate gain.

Line selection gives better performance. Less complexity needs to be allocated
to the 1200 m lines, and they achieve their target rate with µfar = 0.6. This
leaves 40% of the available complexity to the 1200 m lines, allowing them to
achieve 41% of the potential gains.

Joint selection gives a much higher performance than either line or tone se-
lection alone. The 1200 m line target rate is achieved with only µfar = 0.2
and the 900 m lines can increase their rates to 35.9 Mbps, which is 80% of the
achievable gain. This underscores the importance of exploiting both space and
frequency selectivity when designing a partial precoder.

So using joint selection 70% of the achievable gains on the 1200 m lines, and
80% of the achievable gains on the 900 m lines can be achieved. This is done
with only 20% of the run-time complexity of full precoding.

Hence Alg. 6.4 is a computationally simple approach for partial crosstalk pre-
coder design that leads to low initialization complexity, low run-time complex-
ity and near-optimal performance.

6.8 Summary

Crosstalk is the dominant source of performance degradation in modern DSL
systems. Several crosstalk cancellation and precoding schemes have been pro-
posed to address this. Whilst these schemes lead to large performance gains,
they have high run-time complexities, typically beyond the scope of implemen-
tation for current systems.

Crosstalk channels in DSL are space and frequency selective. That is, the ma-
jority of crosstalk comes from a few users and its effects are limited to a subset
of tones. Partial coordination exploits this by limiting operation to the tones
and lines where it gives maximum benefit. As a result these schemes achieve
the majority of the gains of full coordination at a fraction of the complexity.

This chapter presented several partial coordination algorithms. Line Selection
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removes only the largest crosstalkers of each user. This allows it to exploit the
space selectivity of crosstalk, however since the number of cancelled crosstalkers
is the same on each tone, frequency selectivity cannot be exploited. Tone
Selection uses full coordination on the tones that benefit the most, however
since this is an ‘all or nothing’ approach, it cannot exploit space selectivity
by only removing the dominant crosstalkers. Joint Line-Tone Selection gives
the best performance, limiting coordination to the lines and tones that benefit
most.

In upstream transmission, the Simple Joint Line-Tone Selection algorithm
achieves 90% of the performance gains of full cancellation with only 29% of
the run-time complexity. In downstream transmission, this algorithm achieves
80% of the performance gains of full precoding with 20% of the run-time com-
plexity.

The distribution of run-time complexity between users was considered. This
allows complexity to be allocated to the users who benefit most, leading to
further reductions in complexity. In a similar fashion to the multi-user power
allocation from Chapter 3, this led to the development of rate regions. The
difference here is that computing power rather than transmit power is allocated
between users.

This chapter has only considered applications to VDSL. Nevertheless, the tech-
niques presented here can also be applied to other wireline systems such as
ADSL and Ethernet-in-the-first-mile (EFM).
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Chapter 7

Conclusions

The goal of this thesis was to develop practical multi-user techniques for miti-
gating crosstalk in DSL. This chapter summarizes the key results of the thesis
and suggests topics for future work.

Multi-user techniques are based on the coordination of different users in a
network. This can be done on either a spectral or signal level.

Part I of this thesis investigated multi-user spectra coordination. With spectral
coordination the transmit spectra of the modems within a network are limited
in some way to minimize the negative effects of crosstalk. Each modem must
achieve a trade-off between maximizing its own data-rate and minimizing the
crosstalk it causes to other modems within the network. The goal is to achieve
a fair trade-off between the rates of the different users.

Chapter 3 investigated the design of optimal transmit spectra for a network of
interfering DSLs. This problem was previously considered intractable since it
requires the solution of a high-dimensional, non-convex optimization. Chapter
3 showed how the application of a dual-decomposition can solve the optimiza-
tion in an efficient, tractable way. The resulting algorithm, which we name
optimal spectrum balancing, achieves significant gains over existing spectra co-
ordination algorithms, typically doubling or tripling the achievable data-rate.
The optimal spectrum management algorithm is now part of the draft ANSI
standard on Dynamic Spectrum Management[8].

Part II of this thesis investigated multi-user signal coordination. In a DSL
network, the line-side transceivers are often co-located at the CO. This allows
modems to be co-ordinated on a signal level.

In the upstream signal coordination is used between co-located CO receivers.

153
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Reception is done in a joint fashion; the signals received on each line are com-
bined to cancel crosstalk whilst preserving the signal of interest.

Chapter 4 discussed crosstalk canceler design. Existing techniques are based
on decision feedback between the different users. To prevent error propagation
decoding must be done before decisions are fed back, which leads to a high
computational complexity and latency. To address this problem a simple linear
canceler was presented based on the well known ZF criterion. This technique
has a low complexity and latency, and operates close to the theoretical multi-
user channel capacity.

In the downstream signal coordination is used between co-located CO transmit-
ters. Transmission is done in a joint fashion; some predistortion is introduced
into the signal intended for each user prior to transmission. This predistortion
is chosen such that it annihilates with the crosstalk introduced in the channel.
As a result the CP modems receive a crosstalk free signal.

This technique, known as crosstalk precoding, was discussed in Chapter 5. Ex-
isting precoder designs lead to poor performance or require the replacement
of CP modems. Millions of CP modems are currently in use, owned and op-
erated by a multitude of customers. Replacing these modems presents a huge
legacy issue. To address this problem a simple linear precoder was presented
based on a channel diagonalizing criterion. This design has a low complex-
ity and works with existing CP modems and operates close to the theoretical
multi-user channel capacity.

As a by-product, the work in Chapter 4 and 5 produced a set of bounds on the
determinants and inverses of diagonally dominant matrices, which are listed in
Appendix B.

Despite the low complexity of the techniques presented in Chapter 4 and 5,
signal coordination still requires a much larger run-time complexity than ex-
isting DSL modems. Crosstalk cancellation and precoding have a complexity
that scales quadratically with the number of lines within a binder. For typical
binders, which contain anywhere from 20 to 100 lines, these techniques are
outside the scope of present day implementation. Chapter 6 addressed this
problem through a technique known as partial cancellation.

It is well known that the majority of crosstalk experienced on a line comes
from the 3 to 4 surrounding pairs in the binder. Furthermore, since crosstalk
coupling varies dramatically with frequency, the worst effects are limited to a
small selection of tones. Partial cancelers exploit this to achieve the majority
of the performance of full cancellation at a fraction of the complexity. Whilst
the idea of partial cancellation has been discussed in literature, to date no work
has specifically focused on partial canceler design.

Chapter 6 investigated partial canceler and precoder design, which is essentially
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a resource allocation problem. Given a limited amount of available run-time
complexity, a modem must distribute this across lines and tones such that the
data-rate is maximized. Chapter 6 presented the optimal algorithm for partial
canceler design and several simpler, sub-optimal algorithms. These algorithms
were shown to achieve 90% of the data-rate of full cancellation at less than 30%
of the complexity.

Multi-user techniques address the three key challenges of speed, reach and
symmetry facing DSL systems today. This thesis developed practical multi-user
techniques for mitigating crosstalk in DSL. The techniques proposed have low
complexity, low latency, and are compatible with existing customer premises
equipment. In addition to being practical, the techniques were also shown to
yield near-optimal performance, operating close to the theoretical multi-user
channel capacity. As DSL continues to roll-out, multi-user techniques such as
those proposed in this thesis will prove essential in maintaining an edge over
competing broadband technologies.

Further Research

This thesis is only the first step in developing practical, multi-user techniques
for DSL. Many interesting questions remain unanswered, and form the basis
for future research. Some interesting, unexplored areas are listed here.

Autonomous Spectra Coordination

The spectra coordination algorithm developed in Chapter 3, optimal spectrum
balancing, is a centralized algorithm requiring a spectrum management center
(SMC) for direct implementation. In practice such a SMC may not exist,
or may operate under limited knowledge of the network characteristics; for
example the crosstalk channels are unknown in current DSL networks.

For this reason, autonomous algorithms are preferred from a practical stand-
point. Autonomous algorithms operate independently on each modem, and
only make use of information that can be measured at the modem, such as the
line SNR. Autonomous algorithms minimize the overhead required for commu-
nication with the SMC, and increase the speed at which modems can adapt to
changing line conditions.

In future work it will be interesting to develop autonomous DSM algorithms
based on the insight gained from optimal spectrum balancing. The goal is to
find a simple, autonomous algorithm which yields near-optimal performance in
a broad range of scenarios. Early work in this area looks promising[20].
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Combining Spectra Coordination with Bandplan Design

The spectra coordination algorithms investigated in Chapter 3 were constrained
to operate under a fixed bandplan. This bandplan determines whether a tone
is to be used for upstream or downstream transmission.

Using a fixed bandplan fixes the symmetry of service, which is the ratio be-
tween upstream and downstream rates. In many scenarios it is advantageous
for an operator to vary the symmetry of service based on each customer’s re-
quirements, and there is already some discussion in standardization of allowing
variable band-plans in fibre-to-the-basement deployments[81].

Jointly designing the transmit spectra and bandplan is a complex and typically
intractable problem. A similar approach to optimal spectrum balancing could
be used to find an efficient solution[21].

Combining Spectral and Partial Coordination

Chapter 6 discussed the design of partial crosstalk cancelers and precoders
under the assumption of a flat transmit PSD. Performance could be improved
by optimizing the transmit spectrum of each line. The combination of spectra
coordination with partial cancellation is a difficult problem since the choice
of transmit spectra is inherently linked to the choice of which crosstalkers to
cancel.

Early work suggests that a dual decomposition could be used, in a similar fash-
ion to optimal spectrum balancing, to reduce the complexity of joint transmit
spectra and partial canceler design[110]. Significant work must still be done to
turn this idea into an efficient and practical algorithm.

Adaptive Partial Cancelers and Precoders

The partial cancelers and precoders discussed in Chapter 6 rely on full channel
knowledge. In practice this is straight-forward to obtain using MIMO channel
identification techniques[112, 11, 57]. Nevertheless, it is still interesting to
develop adaptive methods for partial cancellation, since these will lead to lower
complexity, and faster adaption to changing line conditions.

The design of adaptive filters with sparsity constraints is a well known problem
in the research community, on which a large body of work exists[68, 51]. These
techniques could be applied in a DSL context. The goal is to develop a partial
canceler that can adapt its filter coefficients as new modems come online and
as the channel changes, whilst still maintaining sparsity. Early work in this
area looks promising[69].
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Fundamental Work

The optimal spectrum balancing algorithm provides the optimal solution to the
spectra coordination problem. At the same time, it shows that dual decom-
position can be applied to non-convex problems. This is a novel application
of the dual decomposition, and suggests a more general algorithm that can be
used to solve a whole class of non-convex problems.

It is interesting to generalize the optimal spectrum balancing algorithm, and
clearly define the class of problems that it can solve. Early work suggests
that this approach can efficiently solve any non-convex problem, provided that
the objective can be decomposed, and that there is a degree of smoothness in
the parameters on different tones[110]. Under these assumptions, a frequency-
sharing argument can be used to ensure a duality-gap of zero in the final solu-
tion and optimality[110]. This work could significantly broaden the application
of optimal spectrum balancing and is an important area for future research.

Another fundamental problem is the capacity of the interference channel. In
Chapter 3 it was assumed that each modem treats crosstalk as background noise
as this is the approach currently adopted in DSL modems. However, more ad-
vanced interference cancellation techniques can be employed, even when signal
coordination is not possible. The capacity region for the interference channel
is a long-standing open problem in information theory, and an important area
for future work.
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Appendices

A Optimality of Optimal Spectrum Balancing

The optimal spectrum balancing algorithm is listed as Alg. A.1. If discrete
bitloading is employed then the maximization in the function optimize s is lim-
ited to the PSD combinations corresponding to valid bitloading combinations,
as calculated by (3.10).

The algorithm operates as follows. It is necessary to search through both
λ1 and λ2 to find values which place sufficient importance on the total power
constraint terms within the Lagrangian (3.12). Variation of w makes it possible
to map out the optimal, achievable points on the convex hull of the rate region.

The algorithm contains three loops, an outer loop that varies w, an intermediate
loop that searches for λ1 and an inner loop that searches for λ2. Bisection is
used in each search.

When searching for λn, it is first necessary to find a value of λn which ensures
that the power constraint of user n is satisfied. This value is stored in λmax

n .
Note that a larger λn places more emphasis on the power constraint of user n
in the Lagrangian. As a result, using a larger λn will result in a lower total
power for user n.

Once λmax
n is found the algorithm proceeds to bisection. Note that after the

algorithm has completed, for each user either
∑

k sn
k = Pn or the corresponding

Lagrangian multiplier is driven to zero, λn = 0. Thus the Lagrangian and the
original objective become equivalent. More rigorously,

Theorem A.1 For each w Alg. A.1 returns a PSD combination that is optimal
for the spectrum management problem (3.2). That is, for some Rtarget

1

s1, s2 = arg max
s1,s2

R2, (A.1)

s.t. R1 ≥ Rtarget
1 ,
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∑

k

sn
k ≤ Pn, ∀n,

0 ≤ sn
k ≤ sn,max

k , ∀n, k.

Here Rtarget
1 is in fact the rate of user 1 at convergence of the algorithm. Vary-

ing w from 0 to 1 allows all optimal operating points that lie on the convex
hull of the rate region to be found. If the rate region is convex then all optimal
operating points are found.

Proof : To prove the optimality of Alg. A.1 as stated in Theorem A.1, it is first
shown that the algorithm converges. It will then be shown that at convergence
maximizing the Lagrangian is equivalent to maximizing the weighted rate-sum
(3.11). This implies the optimality of the PSDs generated by the algorithm1.

To prove the convergence of Alg. A.1, the convergence of a related routine is
first examined. This routine finds the optimal value for λn, thereby ensuring
that the total power constraint on user n (3.3) is satisfied. At this value of
λn the routine finds the optimal PSD for user n. As will be shown in Corol-
lary A.5 and A.6, the algorithms optimize λ1 and optimize λ2 can be seen as
special cases of this routine for specific values of the optimisation function
f(sn). Lemma A.3 proves that this routine converges. This in turn implies the
convergence of optimize λ1 and optimize λ2.

First define the objective function

G(sn, λn) , f(sn) + λn(Pn −
∑

k

sn
k ). (A.2)

Denote the optimal power allocation for a given λn

sn(λn) , argmax
sn

G(sn, λn),

with sn
k (λn) , [sn(λn)]k. The routine for user n is listed as Alg. A.2.

1This derivation resulted from close collaboration with Prof. Wei Yu, University of
Toronto, Canada.
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Algorithm A.1 Optimal Spectrum Balancing

Main Function

for w = 0 . . . 1
s1, s2 = optimize λ1(w)

end

Function s1, s2 = optimize λ1(w)
λmax

1 = 1, λmin
1 = 0

while
∑

k s1
k > P1

λmax
1 = 2λmax

1

s1, s2 = optimize λ2(w, λmax
1 )

end
repeat

λ1 = (λmax
1 + λmin

1 )/2
s1, s2 = optimize λ2(w, λ1)
if
∑

k s1
k > P1, then λmin

1 = λ1, else λmax
1 = λ1

until convergence

Function s1, s2 = optimize λ2(w,λ1)
λmax

2 = 1, λmin
2 = 0

while
∑

k s2
k > P2

λmax
2 = 2λmax

2

s1, s2 = optimize s(w, λ1, λ
max
2 )

end
repeat

λ2 = (λmax
2 + λmin

2 )/2
s1, s2 = optimize s(w, λ1, λ2)
if
∑

k s2
k > P2, then λmin

2 = λ2, else λmax
2 = λ2

until convergence

Function s1, s2= optimize s(w, λ1, λ2)
for k = 1 . . .K

s1
k, s2

k = arg maxs1

k
,s2

k
Lk(s1

k, s2
k, w, λ1, λ2)

s.t. 0 ≤ sn
k ≤ sn,max

k , ∀n
(solve by 2-D exhaustive search)

end
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Algorithm A.2 Routine for user n

λmax
n = 1, λmin

n = 0;
while

∑
k sn

k > Pn

λmax
n = 2λmax

n ;
sn = arg maxsn

f(sn) + λmax
n (Pn −∑k sn

k );
end
repeat

λn = (λmax
n + λmin

n )/2;
sn = arg maxsn

f(sn) + λn(Pn −∑k sn
k );

if
∑

k sn
k > Pn, then λmin

n = λn, else λmax
n = λn;

until convergence

The following Lemma is used to prove the convergence of this routine.

Lemma A.2 Fix n.
∑

k sn
k (λn) is monotonic decreasing in λn. Furthermore

limλn→∞

∑
k sn

k (λn) = 0.

Proof : Consider two Lagrangian multipliers λa
n and λb

n and their correspond-
ing optimal PSDs sa

n , sn(λa
n) and sb

n , sn(λb
n). Denote the elements of these

PSDs as sn,a
k and sn,b

k respectively. Let

λb
n ≥ λa

n. (A.3)

Define

A , f(sb
n) + λb

n(Pn −
∑

k

sn,b
k ),

B , f(sa
n) + λb

n(Pn −
∑

k

sn,a
k ),

C , f(sa
n) + λa

n(Pn −
∑

k

sn,a
k ),

D , f(sb
n) + λa

n(Pn −
∑

k

sn,b
k ).

Now G(sb
n, λb

n) ≥ G(sa
n, λb

n) by the optimality of sb
n in G(sn, λb

n). Hence A ≥ B.
Similarly the optimality of sa

n in G(sn, λa
n) implies C ≥ D. Consider 3 cases:

In the first case let Pn −∑k sn,a
k ≥ 0. Combining this with (A.3) implies

B ≥ C. Now A ≥ B ≥ C ≥ D implies A − D ≥ B − C. Hence

(λb
n − λa

n)(Pn −
∑

k

sn,b
k ) ≥ (λb

n − λa
n)(Pn −

∑

k

sn,a
k ),
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which implies ∑

k

sn,a
k ≥

∑

k

sn,b
k . (A.4)

In the second case let Pn −
∑

k sn,b
k ≤ 0. Combining this with (A.3) implies

D ≥ A. Now C ≥ D ≥ A ≥ B implies C − B ≥ D − A. Hence

(λa
n − λb

n)(Pn −
∑

k

sn,a
k ) ≥ (λa

n − λb
n)(Pn −

∑

k

sn,b
k ),

which again implies (A.4).

In the third case let Pn −
∑

k sn,a
k < 0 and Pn −

∑
k sn,b

k > 0. This implies

Pn −∑k sn,b
k > Pn −∑k sn,a

k and again leads to (A.4).

So in all cases a larger λn leads to a smaller
∑

k sn
k . This implies that

∑
k sn

k

is monotonic decreasing in λn.

The second part of the Lemma is now proved. From (A.2) it can be shown that
for large λn, G(sn, λn) ' λn(Pn −∑k sn

k ) with the approximation becoming
exact as λn → ∞. Hence limλn→∞ sn(λn) = argmaxsn

λn(Pn−
∑

k sn
k ) = 01×K

where 01×K is the length K vector with all elements equal to zero.

Lemma A.3 Routine for user n converges. At convergence

sn = arg max
sn

f(sn) s.t.
∑

k

sn
k ≤ Pn.

Proof : The routine consists of two stages: a preamble that determines λmax
n

and the actual routine itself.

The preamble clearly converges since from Lemma A.2,
∑

k sn
k (λn) → 0 as

λn → ∞.

The convergence of the main part of routine for user n can be shown as follows:
λmax

n − λmin
n decreases by half in each iteration. Thus, λn converges to a fixed

value. Let’s now consider two cases, depending on whether
∑

k sn
k (λmin

n ) > Pn

or not.

Suppose that
∑

k sn
k (λmin

n ) > Pn at λmin
n = 0, then since the preamble ensures

that
∑

k sn
k (λmax

n ) ≤ Pn, throughout the algorithm it is always the case that∑
k sn

k (λmin
n ) > Pn and

∑
k sn

k (λmax
n ) ≤ Pn. Since λmax

n ≥ λn ≥ λmin
n , λmin

n and
λmax

n converge to a fixed value, and since
∑

k sn
k (λn) is monotonic in λn, this

implies that
∑

k sn
k (λn) must converge to Pn. On the other hand, suppose that∑

k sn
k (λmin

n ) ≤ Pn at λmin
n = 0. Then, λn will converge to 0.
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Hence the algorithm will converge and at convergence either
∑

k sn
k (λn) = Pn

or λn = 0 . So at convergence

G(sn, λn) = f(sn).

In the routine

sn = arg max
sn

G(sn, λn),

= arg max
sn

f(sn) s.t.
∑

k

sn
k ≤ Pn.

To see this, clearly sn satisfies the constraint. Further, if there is some other
feasible s′n that does better than sn for the objective function f(sn), then s′n
should do better than sn for the objective G(sn, λn) also. This is contradicted
by the optimality of sn in G(sn, λn). Hence sn must be optimal in f(sn).

Lemma A.4 The function optimize s (from Alg. 3.2) yields PSDs s1 and s2

which maximize the Lagrangian.

Proof : From function optimize s

s1
k, s2

k = argmax
s1

k
,s2

k

Lk(w, λ1, λ2, s
1
k, s2

k).

Since L =
∑

k Lk + λ1P1 + λ2P2, and since optimisation of the Lagrangian is
unconstrained (recall that the constraints are incorporated into the objective
function and need not be explicitly enforced) this implies

s1, s2 = arg max
s1,s2

L(w, λ1, λ2, s1, s2).

Define the rates of user 1 and user 2 with the PSDs s1 and s2 as R1(s1, s2) and
R2(s1, s2) respectively.

Corollary A.5 The function optimize λ2 (from Alg. A.1) converges. At con-
vergence

s2 = arg max
s1,s2

wR1(s1, s2) + (1 − w) R2(s1, s2) + λ1(P1 −
∑

k

s1
k);

s.t.
∑

k

s2
k ≤ P2. (A.5)



A. Optimality of Optimal Spectrum Balancing 165

Proof : Let n = 2 and f(s2) , maxs1 wR1(s1, s2)+(1−w)R2(s1, s2)+λ1(P1−∑
k s1

k). Lemma A.4 implies that optimize λ1 and Alg. A.2 are equivalent.
Hence Lemma A.3 implies optimize λ2 converges, and that at convergence (A.5)
is satisfied.

Corollary A.6 The function optimize λ1 (from Alg. A.1) converges. At con-
vergence

s1 = argmax
s1,s2

wR1(s1, s2) + (1 − w)R2(s1, s2);

s.t.
∑

k

s1
k ≤ P1,

∑

k

s2
k ≤ P2. (A.6)

Proof : Let n = 1 and

f(s1) = max
s2

wR1(s1, s2) + (1 − w)R2(s1, s2) s.t.
∑

k

s2
k ≤ P2.

Then Lemma A.3 and Corollary A.5 imply optimize λ1 converges, and that at
convergence (A.6) is satisfied.

From Theorem 3.1, for any particular w, there exists some Rtarget
1 for which

the weighted rate-sum optimization (A.6) is equivalent to the original spectrum
management problem (3.14). Hence for any particular w the weighted rate-sum
optimization leads to an optimal operating point.

Corollary A.6 implies that for each value of w in Alg. 3.2, the PSD combination
returned by the algorithm maximizes a weighted-rate sum. Hence the PSD
combination is also an optimal solution to the spectrum management problem
(3.14). Furthermore, Theorem 3.2 states that by varying w from 0 to 1 it is
possible to map out all achievable operating points on the boundary of the
convex hull of the rate region.

This appendix has only explicitly proved optimality for the 2-user case. The
proof for the N -user case follows inductively from what is given here. This
concludes the proof of Theorem A.1.

It should be made clear that even when the rate region is non-convex, the
PSD combinations returned by the optimal spectrum balancing algorithm are
optimal, resulting in an operating point on the boundary of the rate region. The
convexity of the rate region affects only the ability of the proposed algorithm
to explore all optimal operating points. It does not affect the optimality of the
points found by the algorithm.

Note that the cost function on each tone Lk is still non-convex. Hence the
optimization of Lk must be solved through exhaustive search, which has an
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exponential complexity in N . The important observation is that since the
optimization on each tone is solved independently the algorithm has a linear,
rather than exponential, complexity in K. This results in a computationally
tractable algorithm.

If the function optimize s finds multiple PSD combinations that yield the same
value for the Lagrangian Lk, then all PSD combinations are stored. This
ensures that if multiple points in the rate region are optimal for the same
weight w then each of these points is discovered.
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B Bounds on Diagonally Dominant Matrices

Define the set A(N) of N × N matrices, such that for any A(N) ∈ A(N)

∣∣∣∣
[
A(N)

]
n,n

∣∣∣∣ = 1;

∣∣∣∣
[
A(N)

]
n,m

∣∣∣∣ ≤ αk, ∀n 6= m.

Define the set B(N) of N × N matrices, such that for any B(N) ∈ B(N)

∣∣∣∣
[
B(N)

]
n,n

∣∣∣∣ = 1, ∀n < N ;

∣∣∣∣
[
B(N)

]
N,N

∣∣∣∣ ≤ αk;

∣∣∣∣
[
B(N)

]
n,m

∣∣∣∣ ≤ αk, ∀n 6= m.

Theorem B.1 Consider any A(N) ∈ A(N) and B(N) ∈ B(N). The magnitude
of the determinants of A(N) and B(N) can be bounded as follows

∣∣∣det(A(N))
∣∣∣ ≤ A(N)

max, (B.1)
∣∣∣det(B(N))

∣∣∣ ≤ B(N)
max, (B.2)

where [
A

(m)
max

B
(m)
max

]
,

(
m∏

i=1

[
1 (i − 1)αk

αk (i − 1)αk

])[
1
0

]
,

and

A
(m)
min , 1 −

m∑

i=1

αk(i − 1)B(i−1)
max .

Furthermore, if

A
(m)
min

≥ αknB(m)
max, ∀m < N ; (B.3)

then the following bound also holds

∣∣∣det(A(N))
∣∣∣ ≥ A

(N)
min. (B.4)

Note that |.| denotes the absolute value operator, whilst det(.) denotes the de-
terminant operator.
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Proof : The proof is based on induction. Begin by assuming that the bounds
(B.1), (B.2) and (B.4) hold for any N × N matrices of the form A(N) and
B(N) for some specific value of N . Now consider any matrix A(N+1) ∈ A(N+1).
Decompose A(N+1) as

A(N+1) =




A(N)

a1,N+1

...
aN,N+1

aN+1,1 · · · aN+1,N 1


 ,

where an,m ,
[
A(N+1)

]
n,m

and A(N) is the submatrix containing the first N

rows and columns of A(N+1). By expanding the determinant along the last
row of A(N+1) it can be seen that

∣∣det(A(N+1))
∣∣

=
∣∣det(A(N))

+
∑N

m=1(−1)N+1−maN+1,m det
([

A
(N)

m aN+1

])∣∣∣ ,
≤
∣∣det(A(N))

∣∣+
∑N

m=1 αk

∣∣∣det
([

A
(N)

m aN+1

])∣∣∣ ,

(B.5)

where A
(N)

m is the sub-matrix formed by removing column m from A(N) and
aN+1 , [a1,N+1 . . . aN,N+1]

T . The second line exploits the fact that row permu-
tation does not affect the magnitude of a determinant. Define the permutation
matrix

Πm , [e1 · · ·em−1 em+1 . . .eN em] ,

where em is defined as the mth column of the N × N identity matrix. Note

that ΠT
m[A

(N)

m aN+1] ∈ B(N). Using the fact that row permutations have no
effect on the magnitude of a determinant, together with (B.1), (B.2) and (B.5)
now yields ∣∣∣det(A(N+1))

∣∣∣ ≤ A(N)
max + αkNB(N)

max,

hence

A(N+1)
max = A(N)

max + αkNB(N)
max. (B.6)

Now consider any matrix B(N+1) ∈ B(N+1). Decompose B(N+1) as

B(N+1) =




C(N)

b1,N+1

...
bN,N+1

bN+1,1 · · · bN+1,N bN+1,N+1


 ,

where bn,m ,
[
B(N+1)

]
n,m

and C(N) is the submatrix containing the first N

rows and columns of B(N+1). By expanding the determinant along the last row
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of B(N+1) it can be seen that
∣∣det(B(N+1))

∣∣
=
∣∣bN+1,N+1 det(C(N))

+
∑N

m=1(−1)N+1−mbN+1,m det
([

C
(N)

m bN+1

])∣∣∣ ,
(B.7)

where C
(N)

m is the sub-matrix formed by removing column m from C(N) and
bN+1 , [b1,N+1 . . . bN,N+1]

T . Note that C(N) ∈ A(N) and

ΠT
m[ C

(N)

m bN+1 ] ∈ B
(N).

Using the fact that row permutations have no effect on the magnitude of a
determinant, together with (B.1), (B.2), and (B.7) now yields

∣∣∣det(B(N+1))
∣∣∣ ≤ αkA(N)

max + αkNB(N)
max,

hence
B(N+1)

max = αkA(N)
max + αkNB(N)

max. (B.8)

Combining (B.6) and (B.8) in matrix form yields

[
A

(N+1)
max

B
(N+1)
max

]
=

[
1 αkN
αk αkN

] [
A

(N)
max

B
(N)
max

]
. (B.9)

We now proceed with the inductive proof. First note that
∣∣A(1)

∣∣ = 1 and∣∣B(1)
∣∣ ≤ αk, so (B.1) and (B.2) hold for N = 1. Hence through induction,

(B.9) implies that (B.1) and (B.2) must hold for all N . This concludes the
proof for the upper bounds (B.1) and (B.2). We now turn our attention to the
lower bound (B.4). We assume that (B.4) holds for some specific value of N .
Hence ∣∣∣det(A(N))

∣∣∣ ≥ A
(N)
min.

Eq. (B.3) now implies

∣∣∣det(A(N))
∣∣∣ ≥ αkNB(N)

max,

≥
∣∣∣∣∣

N∑

m=1

(−1)N+1−maN+1,m det([A
(N)

m aN+1])

∣∣∣∣∣ ,

where (B.2) is used in the second line. Combining this with (B.5) and (B.2)
now implies ∣∣∣det(A(N+1))

∣∣∣ ≥
∣∣∣det(A(N))

∣∣∣− αkNB(N)
max,

which together with (B.4) yields

A
(N+1)
min = A

(N)
min − αkNB(N)

max. (B.10)



170 Appendices

First note that
∣∣A(1)

∣∣ = 1 and A
(1)
min = 1, so (B.4) holds for N = 1. Hence

through induction, (B.10) implies that (B.4) holds for all N . This concludes
the proof for the lower bound (B.4).

Theorem B.2 If G ∈ A(N) and A
(n)
min

≤ αknB
(n)
max, ∀n < N ; then the magni-

tude of the elements of G−1 can be bounded

∣∣∣
[
G−1

]
n,m

∣∣∣ ≤
{

A
(N−1)
max /A

(N)
min

, n = m;

B
(N−1)
max /A

(N)
min

, n 6= m.
(B.11)

Proof : By definition of the matrix inverse

∣∣∣
[
G−1

]
n,m

∣∣∣ =
∣∣∣det(G

m,n
)
∣∣∣ / |det(G)| , (B.12)

where G
m,n

is the sub-matrix formed by removing row m and column n from
G. Now G ∈ A(N) so from theorem B.1

|det(G)| ≥ A
(N)
min. (B.13)

If m = n then G
m,n ∈ A(N−1) and from theorem B.1

∣∣∣det(G
m,m

)
∣∣∣ ≤ A(N−1)

max , ∀m. (B.14)

If m 6= n then ΠT
nG

m,n
Πm ∈ B(N−1) and from theorem B.1

∣∣∣det(G
m,n

)
∣∣∣ =

∣∣∣det(ΠT
nG

m,n
Πm)

∣∣∣ ≤ B(N−1)
max , ∀m 6= n. (B.15)

Combining (B.12), (B.13), (B.14) and (B.15) yields (B.11), which concludes
the proof.
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