1,707 research outputs found

    Chaos controller for switching regulators aiming enhanced design-space towards miniaturization

    Get PDF
    This paper tackles the control of fast-scale instabilities in a buck switching power converter aiming to expand its design-space towards miniaturization. After briefly revisiting the working principle of existing chaos controllers, the paper explores an alternative approach based on amplifying the harmonic at the switching frequency. Numerical simulations show that the proposed controller can concurrently improve both fast-scale and slow-scale stability margins. Finally, the paper proposes a chaos controller combined with an output ripple reduction network and studies their interaction with the aim of achieving both low-ripple and improved stability.Preprin

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach

    Chaos controller for switching regulators aiming enhanced design-space towards miniaturization

    Get PDF
    This paper tackles the control of fast-scale instabilities in a buck switching power converter aiming to expand its design-space towards miniaturization. After briefly revisiting the working principle of existing chaos controllers, the paper explores an alternative approach based on amplifying the harmonic at the switching frequency. Numerical simulations show that the proposed controller can concurrently improve both fast-scale and slow-scale stability margins. Finally, the paper proposes a chaos controller combined with an output ripple reduction network and studies their interaction with the aim of achieving both low-ripple and improved stability.Postprint (published version

    Stability analysis and control of DC-DC converters using nonlinear methodologies

    Get PDF
    PhD ThesisSwitched mode DC-DC converters exhibit a variety of complex behaviours in power electronics systems, such as sudden changes in operating region, bifurcation and chaotic operation. These unexpected random-like behaviours lead the converter to function outside of the normal periodic operation, increasing the potential to generate electromagnetic interference degrading conversion efficiency and in the worst-case scenario a loss of control leading to catastrophic failure. The rapidly growing market for switched mode power DC-DC converters demands more functionality at lower cost. In order to achieve this, DC-DC converters must operate reliably at all load conditions including boundary conditions. Over the last decade researchers have focused on these boundary conditions as well as nonlinear phenomena in power switching converters, leading to different theoretical and analytical approaches. However, the most interesting results are based on abstract mathematical forms, which cannot be directly applied to the design of practical systems for industrial applications. In this thesis, an analytic methodology for DC-DC converters is used to fully determine the inherent nonlinear dynamics. System stability can be indicated by the derived Monodromy matrix which includes comprehensive information concerning converter parameters and the control loop. This methodology can be applied in further stability analysis, such as of the influence of parasitic parameters or the effect of constant power load, and can furthermore be extended to interleaved operating converters to study the interaction effect of switching operations. From this analysis, advanced control algorithms are also developed to guarantee the satisfactory performance of the converter, avoiding nonlinear behaviours such as fast- and slowscale bifurcations. The numerical and analytical results validate the theoretical analysis, and experimental results with an interleaved boost converter verify the effectiveness of the proposed approach.Engineering and Physical Sciences Research Council (EPSRC), China Scholarship Council (CSC), and school of Electrical and Electronic Engineerin

    Periodic perturbation method for controlling chaos for a positive output DC-DC luo converter

    Get PDF
    Abstract: A simple, non-feedback method of controlling chaos is implemented for a DC-DC converter. The weak periodic perturbation (WPP) is the control technique applied to stabilize an unstable orbit in a current-mode controlled Positive Output Luo (POL) DC-DC converter operating in a chaotic regime. With WPP, the operation of the converter is limited to stable period-1 orbit that exists in the original chaotic attractor. The proposed control strategy is implemented using simulations and the results are verified with hardware setup. The experimental results of the converter with WPP control are presented which shows the effectiveness of the control strategy

    A study of synchronization in chaotic autonomous Ćuk dc/dc converters

    Get PDF
    Author name used in this publication: H. H. C. IuAuthor name used in this publication: C. K. TseVersion of RecordPublishe
    corecore