1,475 research outputs found

    Online Domain Adaptation for Multi-Object Tracking

    Full text link
    Automatically detecting, labeling, and tracking objects in videos depends first and foremost on accurate category-level object detectors. These might, however, not always be available in practice, as acquiring high-quality large scale labeled training datasets is either too costly or impractical for all possible real-world application scenarios. A scalable solution consists in re-using object detectors pre-trained on generic datasets. This work is the first to investigate the problem of on-line domain adaptation of object detectors for causal multi-object tracking (MOT). We propose to alleviate the dataset bias by adapting detectors from category to instances, and back: (i) we jointly learn all target models by adapting them from the pre-trained one, and (ii) we also adapt the pre-trained model on-line. We introduce an on-line multi-task learning algorithm to efficiently share parameters and reduce drift, while gradually improving recall. Our approach is applicable to any linear object detector, and we evaluate both cheap "mini-Fisher Vectors" and expensive "off-the-shelf" ConvNet features. We quantitatively measure the benefit of our domain adaptation strategy on the KITTI tracking benchmark and on a new dataset (PASCAL-to-KITTI) we introduce to study the domain mismatch problem in MOT.Comment: To appear at BMVC 201

    Good Features to Correlate for Visual Tracking

    Full text link
    During the recent years, correlation filters have shown dominant and spectacular results for visual object tracking. The types of the features that are employed in these family of trackers significantly affect the performance of visual tracking. The ultimate goal is to utilize robust features invariant to any kind of appearance change of the object, while predicting the object location as properly as in the case of no appearance change. As the deep learning based methods have emerged, the study of learning features for specific tasks has accelerated. For instance, discriminative visual tracking methods based on deep architectures have been studied with promising performance. Nevertheless, correlation filter based (CFB) trackers confine themselves to use the pre-trained networks which are trained for object classification problem. To this end, in this manuscript the problem of learning deep fully convolutional features for the CFB visual tracking is formulated. In order to learn the proposed model, a novel and efficient backpropagation algorithm is presented based on the loss function of the network. The proposed learning framework enables the network model to be flexible for a custom design. Moreover, it alleviates the dependency on the network trained for classification. Extensive performance analysis shows the efficacy of the proposed custom design in the CFB tracking framework. By fine-tuning the convolutional parts of a state-of-the-art network and integrating this model to a CFB tracker, which is the top performing one of VOT2016, 18% increase is achieved in terms of expected average overlap, and tracking failures are decreased by 25%, while maintaining the superiority over the state-of-the-art methods in OTB-2013 and OTB-2015 tracking datasets.Comment: Accepted version of IEEE Transactions on Image Processin

    Understanding and Diagnosing Visual Tracking Systems

    Full text link
    Several benchmark datasets for visual tracking research have been proposed in recent years. Despite their usefulness, whether they are sufficient for understanding and diagnosing the strengths and weaknesses of different trackers remains questionable. To address this issue, we propose a framework by breaking a tracker down into five constituent parts, namely, motion model, feature extractor, observation model, model updater, and ensemble post-processor. We then conduct ablative experiments on each component to study how it affects the overall result. Surprisingly, our findings are discrepant with some common beliefs in the visual tracking research community. We find that the feature extractor plays the most important role in a tracker. On the other hand, although the observation model is the focus of many studies, we find that it often brings no significant improvement. Moreover, the motion model and model updater contain many details that could affect the result. Also, the ensemble post-processor can improve the result substantially when the constituent trackers have high diversity. Based on our findings, we put together some very elementary building blocks to give a basic tracker which is competitive in performance to the state-of-the-art trackers. We believe our framework can provide a solid baseline when conducting controlled experiments for visual tracking research

    Visual Prompt Multi-Modal Tracking

    Full text link
    Visible-modal object tracking gives rise to a series of downstream multi-modal tracking tributaries. To inherit the powerful representations of the foundation model, a natural modus operandi for multi-modal tracking is full fine-tuning on the RGB-based parameters. Albeit effective, this manner is not optimal due to the scarcity of downstream data and poor transferability, etc. In this paper, inspired by the recent success of the prompt learning in language models, we develop Visual Prompt multi-modal Tracking (ViPT), which learns the modal-relevant prompts to adapt the frozen pre-trained foundation model to various downstream multimodal tracking tasks. ViPT finds a better way to stimulate the knowledge of the RGB-based model that is pre-trained at scale, meanwhile only introducing a few trainable parameters (less than 1% of model parameters). ViPT outperforms the full fine-tuning paradigm on multiple downstream tracking tasks including RGB+Depth, RGB+Thermal, and RGB+Event tracking. Extensive experiments show the potential of visual prompt learning for multi-modal tracking, and ViPT can achieve state-of-the-art performance while satisfying parameter efficiency. Code and models are available at https://github.com/jiawen-zhu/ViPT.Comment: Accepted by CVPR202

    Towards an Interactive Humanoid Companion with Visual Tracking Modalities

    Get PDF
    The idea of robots acting as human companions is not a particularly new or original one. Since the notion of “robot ” was created, the idea of robots replacing humans in dangerous, dirty and dull activities has been inseparably tied with the fantasy of human-like robots being friends and existing side by side with humans. In 1989, Engelberger (Engelberger
    corecore