19 research outputs found

    A Framework for Visually Monitoring Business Process Compliance (Extended Abstract)

    Get PDF
    Any enterprise must ensure that its business processes comply with imposed compliance rules. This extended abstract presents a comprehensive framework for visually monitoring business process compliance. As opposed to existing approaches, the framework supports the visual monitoring of all relevant process perspectives based on the extended Compliance Rule Graph (eCRG) language. Furthermore, it not only allows for the detection of violations, but additionally highlights their causes. Finally, the framework assists users in both monitoring business process compliance and ensuring the compliant continuation of running business processes. Overall, the framework provides a fundamental contribution towards the real-time monitoring of compliance in process-driven enterprises

    Towards a new Tool for Managing Declarative Temporal Business Process Models

    Get PDF
    Business processes which require a high flexibility are com- monly specified in a declarative (e.g., constraint-based) way. In general, offering operational support (e.g., generating possible execution traces) to declarative business process models entails more complexity when compared to imperative modeling alternatives. Such support becomes even more complex in many real scenarios where the management of complex temporal relations between the process activities is crucial (i.e., the temporal perspective should be managed). Despite the needs for enabling process flexibility and dealing with temporal constraints, most existing tools are unable to manage both. In a previous work, we then proposed TConDec-R, which is a constraint-based process modeling lan- guage which allows for the specification of temporal constraints. In this paper we introduce the basis and a prototype of a constraint-based tool with a client/server architecture for providing operational support to TConDec-R process models.Ministerio de Economía y Competitividad TIN2016-76956-C3-2-

    Towards a Beacon-based Situational Prioritization Framework for Process-Aware Information Systems

    Get PDF
    The ongoing digitalization of enterprise computing solutions and the creation of ubiquitous workspaces over new advantages for many business domains. However, it is cost- and work-intensive to create these new kinds of workspaces by adopting interconnecting things and migrating applications into the cloud. On the other, enterprises increasingly strive for the potential of the new workspace opportunities to support their operational processes in the best way. For this purpose, we present an approach to enhance the integration of human resources into business processes by gathering environmental information and reacting to situational changes of workers. More specifically, we present a framework based on beacon technology to determine a situational priority for work items with the goal to properly support the worker in his or her decision-making process. We regard such framework as important aspect for many business domains in order to cope with the demands emerging in the light of work management that requires ubiquitous access to all enterprise resources in the best possible way

    A Constraint-Based Approach for Managing Declarative Temporal Business Process Models

    Get PDF
    There is an increasing interest in aligning information systems in a process-oriented way. As an alternative of the traditional imperative models which tend to be too rigid, processes may be specified in a declarative (e.g., constraint-based) way. Nonetheless, in general, offering operational support (e.g., generating possible execution traces) to declarative business process models entails more complexity when compared to imperative modeling alternatives. Such support becomes even more complex in many real scenarios where the management of complex temporal relations between the process activities is crucial (i.e., the temporal perspective should be managed). Despite the needs for enabling process flexibility and dealing with temporal constraints, most existing tools are unable to manage both. In a previous work, we then proposed TConDec-R, which is a constraint-based process modeling language which allows for the specification of temporal constraints. However, TConDec-R revealed a number of limitations that are overcome with the present work. More specifically, this paper significantly extends and improves our previous work by (1) defining TConDec-R process models based on high-level elements from the constraint programming paradigm, (2) introducing a constraint-based tool with a client/server architecture for providing operational support to TConDec-R process models, and (3) performing an empirical evaluation of the approach

    Decomposition-based Verification of Global Compliance in Process Choreographies

    Get PDF
    The verification of global compliance rules (GCR) in process choreographies (e.g., partner-spanning quality assurance in supply chains) is crucial and challenging due to the restricted visibility of the private processes of the collaborating partners. This paper provides a novel algorithm that decomposes global compliance rules into assertions that can be verified by the partners in a distributed way without revealing any private process details. The decomposition is based on transitivity properties of the underlying GCR specification. This work uses GCR based on antecedent and occurrence patterns and illustrates the transitivity properties based on their specification in first order predicate logic. It is formally shown that the original GCR can be reconstructed from the assertions, which ensures the viability of the approach. The algorithms are prototypically implemented and applied to several scenarios. The ability of checking global compliance constitutes a fundamental pillar of any approach implementing process choreographies with multiple partners

    Verification and Compliance in Collaborative Processes

    Get PDF
    Evidently, COVID-19 has changed our lives and is likely to make a lasting impact on our economic development and our industry and services. With the ongoing process of digital transformation in industry and services, Collaborative Networks (CNs) is required to be more efficient, productive, flexible, resilient and sustainable according to change of situations and related rules applied afterwards. Although the CN area is relatively young, it requires the previous research to be extended, i.e. business process management from dealing with processes within a single organization into processes across different organizations. In this paper, we review current business process verification and compliance research. Different tools approaches and limitations of them are compared. The further research issues and potential solutions of business process verification and compliance check are discussed in the context of CNs

    Multi-criteria decision analysis for non-conformance diagnosis: A priority-based strategy combining data and business rules

    Get PDF
    Business process analytics and verification have become a major challenge for companies, especially when process data is stored across different systems. It is important to ensure Business Process Compliance in both data-flow perspectives and business rules that govern the organisation. In the verification of data-flow accuracy, the conformance of data to business rules is a key element, since essential to fulfil policies and statements that govern corporate behaviour. The inclusion of business rules in an existing and already deployed process, which therefore already counts on stored data, requires the checking of business rules against data to guarantee compliance. If inconsistency is detected then the source of the problem should be determined, by discerning whether it is due to an erroneous rule or to erroneous data. To automate this, a diagnosis methodology following the incorporation of business rules is proposed, which simultaneously combines business rules and data produced during the execution of the company processes. Due to the high number of possible explanations of faults (data and/or business rules), the likelihood of faults has been included to propose an ordered list. In order to reduce these possibilities, we rely on the ranking calculated by means of an AHP (Analytic Hierarchy Process) and incorporate the experience described by users and/or experts. The methodology proposed is based on the Constraint Programming paradigm which is evaluated using a real example. .Ministerio de Ciencia y Tecnología RTI2018–094283-B-C3

    Enabling Multi-Perspective Business Process Compliance

    Get PDF
    A particular challenge for any enterprise is to ensure that its business processes conform with compliance rules, i.e., semantic constraints on the multiple perspectives of the business processes. Compliance rules stem, for example, from legal regulations, corporate best practices, domain-specific guidelines, and industrial standards. In general, compliance rules are multi-perspective, i.e., they not only restrict the process behavior (i.e. control flow), but may refer to other process perspectives (e.g. time, data, and resources) and the interactions (i.e. message exchanges) of a business process with other processes as well. The aim of this thesis is to improve the specification and verification of multi-perspective process compliance based on three contributions: 1. The extended Compliance Rule Graph (eCRG) language, which enables the visual modeling of multi-perspective compliance rules. Besides control flow, the latter may refer to the time, data, resource, and interaction perspectives of a business process. 2. A framework for multi-perspective monitoring of the compliance of running processes with a given set of eCRG compliance rules. 3. Techniques for verifying business process compliance with respect to the interaction perspective. In particular, we consider compliance verification for cross-organizational business processes, for which solely incomplete process knowledge is available. All contributions were thoroughly evaluated through proof-of-concept prototypes, case studies, empirical studies, and systematic comparisons with related works

    Graph-based ontology reasoning for formal verification of BREEAM rules

    Get PDF
    Globally, the need to check regulation compliance for sustainability has become central in the delivery of construction projects. This is partly due to policies by various governments requiring existing and new buildings to comply with certain standards or regulations. However, the verification of whether a building complies with any particular standard or regulation has proven challenging in practice. The purpose of formal verification is to prove that under a certain set of assumptions, a building will adhere to a certain set of requirements, for example the minimum performance standards of key environmental issues. Compliance checking requires different criteria often difficult to straightforwardly define and combine in an integrated fashion for providing holistic interpretation to facilitate easy decision-making. Such criteria, their various flows and combinations can easily be dealt with using conceptual graph theories and Semantic Web concepts which allow rules to be imbued to facilitate reasoning. The aim of this study is to tap on conceptual graphs and Semantic Web concepts to develop a system for checking Building Research Establishment Environmental Assessment Methodology (BREEAM) sustainability standard compliance in the French construction industry. A conceptual graph-based framework that formally describes BREEAM requirements and visually analyse compliance checking processes has been proposed. When implemented in a software that integrates conceptual graphs and Semantic Web knowledge, automatic reasoning allows both the logical specification and the visual interpretation to be displayed and further provides a semantic support for compliance checking information

    A Model-Driven Framework for Enabling Flexible and Robust Mobile Data Collection Applications

    Get PDF
    In the light of the ubiquitous digital transformation, smart mobile technology has become a salient factor for enabling large-scale data collection scenarios. Structured instruments (e.g., questionnaires) are frequently used to collect data in various application domains, like healthcare, psychology, and social sciences. In current practice, instruments are usually distributed and filled out in a paper-based fashion (e.g., paper-and-pencil questionnaires). The widespread use of smart mobile devices, like smartphones or tablets, offers promising perspectives for the controlled collection of accurate data in high quality. The design, implementation and deployment of mobile data collection applications, however, is a challenging endeavor. First, various mobile operating systems need to be properly supported, taking their short release cycles into account. Second, domain-specific peculiarities need to be flexibly aligned with mobile application development. Third, domain-specific usability guidelines need to be obeyed. Altogether, these challenges turn both programming and maintaining of mobile data collection applications into a costly, time-consuming, and error-prone endeavor. The Ph.D. thesis at hand presents an advanced framework that shall enable domain experts to transform paper-based instruments to mobile data collection applications. The latter, in turn, can then be deployed to and executed on heterogeneous smart mobile devices. In particular, the framework shall empower domain experts (i.e., end-users) to flexibly design and create robust mobile data collection applications on their own; i.e., without need to involve IT experts or mobile application developers. As major benefit, the framework enables the development of sophisticated mobile data collection applications by orders of magnitude faster compared to current approaches, and relieves domain experts from manual tasks like, for example, digitizing and analyzing the collected data
    corecore